
4 ``

A MULTIPLE ANT COLONY

METAHEURISTIC FOR THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

THESIS

RonJon Annaballi, Captain, USAF

AFIT/GOR/ENS/02-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
11 Mar 2002

Report Type
Final

Dates Covered (from... to)
July 2001 - March 2002

Title and Subtitle
A Multiple Ant Colony Optimization Metahuristic
for the Air Refueling Tanker Assignment Problem

Contract Number

Grant Number

Program Element Number

Author(s)
RonJon Annaballi, Capt, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School of
Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB, OH 45433-7765

Performing Organization Report Number
AFIT/GOR/ENS/02-01

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Major Dave Ryer HQ AMC/XPY 402 Scott Drive,
Unit 3L3 Scott AFB, IL 62225-5307 Major Juan
Vasquez AFOSR 801 N. Randolph St., Room 933
Arlington, VA 22203-1977

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract
A key tenet to the Air Forces vision of Global Vigilance, Reach, and Power is the ability to project power
via the use of aerial refueling. Scheduling of limited tanker resources is a major concern for Air Mobility
Command (AMC). Currently the Combined Mating and Ranging Planning System (CMARPS) is used to
plan aerial refueling operations, however due to the complex nature of the program and the length of time
needed to run a scenario, the need for a simple tool that runs in much shorter time is desired. Ant colony
algorithms are recently developed heuristics for finding solutions to difficult optimization problems based
on simulation the foraging behavior of ant colonies. It is a distributive metaheuristic that combines an
adaptive memory function with a local heuristic function to repeatedly construct possible solutions which
can then be evaluated. Using multiple ant colony heuristics combined with a simple scheduling algorithm
and modeling the Tanker Assignment Problem as a modified Multiple Depot Vehicle Routing Problem, an
Excel based spreadsheet tool was developed which generates very good solutions in very short time.

Subject Terms
Ant Colony optimization, Heuristics, Metaheuristics, tanker Scheduling, vehicle routing problem, multiple
depot vehicle routing problem

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
98

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GOR/ENS/02-01

A MULTIPLE ANT COLONY

METAHEURISTIC FOR THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

RonJon Annaballi, BS

Captain, USAF

March 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/02-01

A MULTIPLE ANT COLONY

METAHEURISTIC FOR THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

RonJon Annaballi, BS
Captain, USAF

Approved:

__________/s/________________________________ 14 March 2002

James T. Moore, Ph.D. Date
Associate Professor
Department of Operational Sciences

_________/s/__________________________________ 14 March 2002

Raymond R. Hill, Jr., Lt Col, USAF Date
Associate Professor
Department of Operational Sciences

Acknowledgments

 I would like to thank the members of my thesis committee, Dr. Moore,

COL Nanry, and Lt Col Hill for their patience with me while I changed the direction of

my research three times. Their leadership, knowledge, and understanding were

invaluable. Without them, I would not have been able to complete this thesis effort.

Additional thanks go out to the rest of the AFIT faculty for providing me the tools

necessary to finish my research, and ensure success in future analysis jobs. Thanks also

go to Maj. Ryer at AMC for answering my questions about aerial refueling and to Capt

Capehart, Lt Tekelioglu, and Capt Wiley for blazing the way in previous efforts.

A special thanks goes to my classmates. Although you tested my patience at

times as Section Leader, this experience would have been unbearable without all of your

support, stories, and countless games of Euchre. If you ever need a fourth, I’m in.

 Finally, I want to thank my wife and son for their sacrifice during the past 18

months. Every day you teach me what life is really all about. I will never be able to truly

express what you mean to me. I love you with all my heart.

 Ron Annaballi

v v

Table of Contents

Page
Acknowledgments... v

List of Figures ...vii

List of Tables..viii

Abstract .. ix

 I. Introduction.. 1

Background.. 1
Problem Statement... 4
Research Objectives... 5
Scope.. 6
Contribution of Research... 7
Report Overview.. 8

 II. Literature Review .. 9

Tanker Assignment Problem ... 9
Assignment Problem.. 10
Set Covering Problem.. 10
Job Shop Scheduling Problem... 10
Vehicle Routing Problem... 11

Tanker Scheduling Tools ... 12
Combined Mating and Ranging Planning System (CMARPS) .. 12
Hostler’s Air Refueling Tanker Scheduling Tool... 13
Quick Look Tool for Tanker Deployment .. 14
TAP Tool ... 14
Wiley’s Group Theoretic Tabu Search Tool.. 16
Barrel Allocator .. 16

Heuristics ... 18
Tabu Search... 19
Ant Colonies .. 20

Scheduling Theory... 21
Parallel Machine Models .. 22
Precedence Constraints... 24
Critical Path Method... 26

Summary.. 26

III. Methodology.. 28

Introduction.. 28
Vehicle Routing Problem .. 28
Tanker Assignment Problem as a VRP ... 31
Ant Colony Metaheuristic.. 32

vi vi

Scheduling ... 35
Visual Basic With Applications... 37
Measurement of Results .. 37

IV. Results and Analysis.. 39

Southeast Asia Deployment... 39
CMARPS vs. TAP Tool .. 42
Model Improvements... 44

V. Conclusions.. 46

Review ... 46
Recommendations.. 47

Appendix A. TAP Tool VBA Coding.. 51

Bibliography.. 84

Vita ... 87

vii vii

List of Figures

Figure 1. AOA Network Representation.. 24

Figure 2. AON Node Representation ... 25

Figure 3. AON Network Representation.. 25

Figure 4. Southeast Asia Deployment.. 40

viii viii

List of Tables

Table 1. Deliverable Fuel Capacity (radius of 2500NM)... 3

Table 2. Receiver Groups for Southeast Asia Deployment ... 41

Table 3. Best Schedule for Southeast Asia Deployment.. 42

Table 4. Tool comparison for B-52 mission .. 43

Table 5. Tool comparison for fighter missions .. 44

ix ix

AFIT/GOR/ENS/02-01

Abstract

A key tenet to the Air Force’s vision of Global Vigilance, Reach, and Power is the

ability to project power via the use of aerial refueling. Scheduling of limited tanker

resources is a major concern for Air Mobility Command (AMC). Currently the

Combined Mating and Ranging Planning System (CMARPS) is used to plan aerial

refueling operations, however due to the complex nature of the program and the length of

time needed to run a scenario, the need for a simple tool that runs in much shorter time is

desired.

Ant colony algorithms are recently developed heuristics for finding solutions to

difficult optimization problems based on simulation the foraging behavior of ant colonies.

They are distributive metaheuristics that combine an adaptive memory function with a

local heuristic function to repeatedly construct possible solutions which can then be

evaluated. Using multiple ant colony heuristics combined with a simple scheduling

algorithm and modeling the Tanker Assignment Problem as a modified Multiple Depot

Vehicle Routing Problem, an Excel based spreadsheet tool was developed which

generates very good solutions in very short time.

1 1

A MULTIPLE ANT COLONY

METAHEURISTIC FOR THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

I. Introduction

Background

 The United States Air Force prides itself in being able to rapidly project military

power to any point in the world. The key to this vision of Global Vigilance, Reach and

Power is aerial refueling or simply air refueling. Air refueling, the in-flight transfer of

fuel from a tanker aircraft to a receiver aircraft, “supports the national military strategy

across the spectrum of conflict, from peacetime operations for American global interest

to major regional contingencies” (Iannuzzi, 1997b:15). In an age where the United States

military continues to reduce its worldwide footprint, aerial refueling is sometimes the

only way to meet current operational requirements and contingencies. It also provides

the means to meet the Department of Defense’s two war strategy as laid out in the 2001

Quadrennial Defense Review.

Air refueling was first demonstrated in 1923, when then Major Henry “Hap”

Arnold performed the first in-flight hose contact between two De Havilland DH-4B

aircraft (Iannuzzi, 1997a: 22). The Army Air Service continued to experiment with air

refueling during the 1920s; however, it was not until 1929 when the true potential of in-

flight refueling was demonstrated. The flight of the “Question Mark”, a modified Fokker

2 2

C-2A, established new records for both air refueling and endurance. Using two modified

Douglas C-1 biplanes as tankers, 143 contacts were made with the Question Mark

allowing it to remain airborne for over 150 hours and an equivalent of 11,000 miles

(Iannuzzi, 1997a: 22). Major Carl Spaatz commanded the flight and had the following to

say afterwards:

From a military standpoint the successful demonstration of air refueling
means that bombing planes can now take off with heavy loads of bombs
and little gasoline, aerial refuel, and continue to a more distant objective
than would otherwise have been possible. (Iannuzzi, 1997a: 22)

After World War II, air refueling became an accepted strategy in the United States

military. With the advent of strategic nuclear weapons and the requirement to reach any

place in the world, air refueling was seen as the only method to meet this goal. The

Strategic Air Command (SAC) was placed in charge of not only the entire fleet of nuclear

weapon carrying aircraft but also the tanker forces to be used to get these aircraft to their

worldwide targets. By 1957, SAC had 766 tankers, which comprised nearly 40 percent

of its total aircraft inventory (Iannuzzi, 1997a: 23).

Today, practically all aircraft in the entire military fleet can be refueled while in

the air. Aerial refueling operations fall under the control of the Air Mobility Command

based at Scott Air Force Base, Illinois. The KC-135 Stratotanker and the KC-10

Extender are the primary air refueling tankers in the Air Force fleet.

The KC-135 entered the Air Force inventory in 1956 to extend the range of

SAC’s B-52 fleet (Capehart, 2000: 1). Basically a Boeing 707, the KC-135 is the

workhorse of the fleet. It has a range of 1,500 miles with 150,000 pounds of transfer fuel

with a ferry mission of 11,015 miles. (Air Force Magazine, 2000:143) As of January

3 3

2002, the Air Force had a total of 543 KC-135s in its Active Duty, Reserve and Guard

fleet. (Airman, 2002:49)

The KC-10, a modified McDonnell Douglas DC-10, was introduced in the early

1980s to supplement the KC-135 fleet. It has a dual role in that it can also be used to

carry cargo besides/instead of fuel. This ability to carry cargo eliminates the KC-10’s

reliance on forward basing and combined with its much larger fuel holding capability

greatly reduces the number of KC-10s needed to support a deployment. Currently the Air

Force has 50 KC-10s in its Active Duty fleet (Airman, 2002:49).

Table 1. Deliverable Fuel Capacity (radius of 2500NM)

Tanker
type

Fuel
(pounds)

KC-135A 63,000
KC-135R 94,500
KC-135E 75,600
KC-10 162,000

There are two types of missions that air refueling can perform. Aerial refueling

can perform a “force-enhancement” or “deployment” role. This is the traditional role of

tanker aircraft providing a global capability to U.S. aircraft. It makes possible

intercontinental strategic airlift and strategic bombing without the use of forward basing.

It allows the U.S. to quickly concentrate its power anywhere in the world. It can increase

the payloads of aircraft by trading fuel load with cargo load. It allows short-range

fighters to reach any part of the world (Iannuzzi, 1997a: 25).

The second role is that of a “force multiplier” in short-range theater operations.

Aerial refueling allows strike aircraft to increase their combat radius, lengthen loiter time,

4 4

and carry heavier payloads while still returning safely to their operating bases (Iannuzzi,

1997a: 25). This is often known as an “employment” role.

Recent conflicts have proved the vital role aerial refueling plays in successful air

operations. According to the Gulf War Air Power Survey, during Operation Desert

Shield and Desert Storm, 400 tankers flew over 30,000 sorties and logged over 140,000

hours of flight time. Tanker aircraft off-loaded over 1.2 billion pounds of fuel to over

80,000 aircraft (Wiley, 2001: 2). During Operation Allied Force, nearly the entire fleet of

tanker aircraft was used to transfer 356 million pounds of fuel to allied aircraft (Simpson,

2000: 10). More recently, in support of Operation Enduring Freedom, tankers played a

critical role due to the lack of forward basing in the region surrounding Afghanistan.

Seventy percent of the Air Force’s active duty tanker fleet was tied up supporting the air

campaign in Afghanistan (Newman, 2002: 57). This is a remarkable number seeing that

the campaign rarely exceeded 100 strike sorties a day.

Problem Statement

Air Mobility Command’s Tanker Airlift Control Center is responsible for

planning and scheduling all tanker operations in support of air operations. During crisis

situations, the number of aircraft being deployed and the distances required for travel can

be immense. Determining the tanker support for these deployments and matching tanker

aircraft with receiver groups can be a daunting process. AMC uses the combined Mating

and Ranging Planning System to support their decision making process.

CMARPS is a computer simulation that analyzes, plans, and schedules

deployment of tankers in support of military operations. It develops tanker/receiver

5 5

aircraft fueling schedules and flight plans taking into account aircraft limitations as well

as Air Force rules and regulations. Due to the complexities of refueling scenarios, it can

take up to two weeks for CMARPS to produce a schedule. This is inadequate to meet the

many short notice contingencies that often arise in this constantly changing military

environment. Additionally, CMARPS is not interoperable with other AMC airlift

simulations. Since tanker and airlift missions are related and compete for limited airbase

resources, some level of interaction is needed between the various simulation tools.

Research Objectives

Previous thesis efforts by Capehart (2000) and Tekelioglu (2001) have developed

an Excel-based spreadsheet tool, called TAP, which can be used to solve the tanker

assignment problem in much less time than CMARPS. They have interpreted the

problem as both an assignment problem and a scheduling problem, and have used tabu

search techniques to develop solutions.

The objective of this research is to improve TAP tool performance. This is done

by adding increased functionality in the model to make it more operationally realistic.

The approach to solving the problem is also changed as new heuristic methods are

applied to the model.

While improving the TAP Tool, a strongly related task of the research is

verification and validation (V&V) of the TAP Tool. V&V ensures that the model is

producing correct results. It also highlights the strengths and weaknesses of the model.

During development, verification is done by ensuring the model’s algorithms produce the

results that are expected, and that the internal logic of the program is valid. This is

6 6

accomplished through incremental code development and verifying the code works

properly before continuing development. Validation is performed through comparison of

model outputs for some small deployments with the results of other models.

Scope

TAP is a planning tool that models tanker deployment operations based on

various factors. The tanker assignment problem is focused on answering the following

questions:

1. Given receiver group deployment requirements, aircraft characteristics,
system constraints, and defined tanker assets, how many tankers does it take
to meet the receiver’s refueling requirements?

2. Given the previous information, how quickly do receiver aircraft deploy and

arrive at their desired location?

This problem involves assigning non-homogeneous vehicles, located at multiple

locations, to meet the refueling needs of receiver groups. Time windows are also

introduced to account for availability of aircraft over time as well as ensure receiver

groups arrive when needed. In past efforts, this problem has been approached as both an

assignment and scheduling problem. Tankers need to be assigned to receiver groups;

therefore, it can be solved as an assignment problem. Meanwhile, because receiver

groups have certain time availabilities, determining the time that tankers and receiver

groups meet can be viewed as a scheduling problem. The tanker assignment problem can

also be viewed as a vehicle routing problem and a set-covering problem.

Factors effecting this problem include the aircraft fuel capacities and burn rates,

ground speed, true air speed, deployment distances, number of aircraft to be supported,

time frames, locations of both tanker and receiver group origins and destinations, escort

7 7

requirement for receivers, and formation size. Other factors such as wind, altitude, and

crew duty limitations are not explicitly modeled.

Contribution of Research

The goal of this research is to provide AMC with a quick running tanker

assignment tool. This tool builds on past efforts by better representing the operational

characteristics involved with aerial refueling. Because of the speed with which it

executes, the tool can be used to perform more in-depth analysis of aerial refueling issues

than with the current tools.

The tool uses an ant colony optimization algorithm to solve the tanker assignment

problem. This is the first application of this heuristic technique to Air Force related

research at AFIT. Upon searching the literature, it also appears to be the first application

of ant colonies to solve a multiple depot vehicle routing problem.

8 8

Report Overview

This thesis is divided into the following five chapters: Introduction,

Literature Review, Methodology, Results and Analysis, and Conclusions. A brief

description of each follows.

 Chapter 1: Introduction - This chapter discusses the background of the

problem, defines the research focus and objectives, and illustrates the contribution

of the research to the Air Force.

 Chapter 2: Literature Review – This chapter begins with a discussion of

the formulation of the tanker assignment problem. Next past efforts to solve the

problem are discussed. Finally, heuristic methods and their applicability to the

problem are evaluated.

 Chapter 3: Methodology – The methodology chapter begins by describing

the process for formulating the tanker assignment problem. The solution

representation is defined. Next the heuristic to be used is developed, followed by

its implementation as a spreadsheet model.

 Chapter 4: Results and Analysis – This chapter presents the results

produced by the spreadsheet model. Results are compared to those achieved by

previous tools.

 Chapter 5: Conclusions and Recommendations – The research results are

reviewed and recommendations for further research are made.

9 9

II. Literature Review

This chapter begins with the introduction of the tanker assignment problem. Then

possible ways to formulate the tanker assignment problem are illustrated. Next, recent

approaches to scheduling aerial refueling are overviewed. Finally the field of heuristics

is discussed including various techniques which could be employed.

Tanker Assignment Problem

 The tanker assignment problem involves determining which tanker aircraft will

service which receiver groups at what times. The characteristics of this problem are as

follows:

- a set of receivers with their associated origin and destination bases along with
known availability dates and required arrival times

- a set of tankers with their origin bases

- characteristics of both receiver and tanker aircraft (such as flight speed, fuel
capacity, fuel burn rates)

- rules governing aerial refueling such as escort requirement

There are many ways to model the tanker assignment problem. A number of

different interpretations are illustrated below.

10 10

Assignment Problem

The tanker assignment problem can be modeled as an assignment problem (AP),

where you have m servers, n jobs, and a cost cij which is the cost of server j to perform

job i (Winston, 1994: 373). Allowing the tankers to act as servers and the refueling

points to act as jobs, the problem is to assign tankers to refueling points in such a way as

to minimize the cost of completing all jobs, which in this case is the distance the tankers

are required to travel.

The typical AP states that the number of servers must be greater than the number

of jobs, and that each server can only perform one job (Winston, 1994: 373). To model

the tanker assignment problem as an AP, the original problem must be relaxed to account

for timing of events as well as allowing multiple tankers to service the same refuel point

and allowing the same tanker to refuel multiple refuel points (Wiley, 2001: 18).

Set Covering Problem

The tanker assignment problem can also be modeled as a set covering problem.

The set covering problem states that each member of a given set 1 (refueling points) must

be covered by an acceptable member of set 2 (tankers). The goal is to minimize the

number of elements in set 2 it takes to cover set 1 (Winston, 1994: 477). Once again if

we relax the tanker assignment problem to account for multiple refuelings and time

windows, then the set covering problem is a valid interpretation (Wiley, 2001: 17).

Job Shop Scheduling Problem

The tanker assignment problem can be modeled as a job shop scheduling problem

(JSSP). The JSSP is made up of n jobs, composed of m ordered operations which must be

assigned to a set of machines (Pinedo, 1995: 126). In this case the receiver groups act as

11 11

the jobs, the refueling points are the operations, and the tankers serve as the machines

(Wiley, 2001: 16). The goal is to minimize the time it takes for all jobs (refueling points)

to be processed on all the machines (tankers).

The problem with using JSSP is that the tanker assignment problem has multiple

objectives. JSSP will minimize the time it takes for all jobs, but this may take an

inordinate number of tankers. Thus using JSSP alone is not necessarily a good idea

unless your only goal is to minimize the makespan, which may be valid in an emergency

situation.

Vehicle Routing Problem

The tanker assignment problem can be viewed as a vehicle routing problem

(VRP). The standard vehicle routing problem has one depot, which houses many

vehicles, and m customers. The goal is to design vehicle routes such that each customer

belongs to one route, that the demand along the route does not exceed the capacity of the

vehicle, that each route starts and ends at the depot, and that the total duration of the

routes are minimized (Cordeau, 1997: 105). In the tanker assignment problem, tanker

aircraft play the role of the vehicle and the refueling points are the customers.

 For this problem, a simple VRP is inadequate to effectively model the problem.

Since many tanker bases can be used, a multi-depot vehicle routing problem (MDVRP)

would more accurately model the problem. Additionally, since there are time windows in

which aircraft can take off and land, a vehicle routing problem with time windows

(VRPTW) would also be appropriate. The vehicle routing problem must still be relaxed

to allow multiple tankers to service the same refueling point.

12 12

Tanker Scheduling Tools

A number of approaches have been applied to solving the tanker assignment

problem with mixed results. Simulation and integer programming techniques were the

first to be tried. More recently several heuristic methods based approaches have been

implemented. The various methodologies are overviewed below.

Combined Mating and Ranging Planning System (CMARPS)

CMARPS is the current tool used by AMC to schedule air refueling. Originally

developed in 1982, CMARPS is a deterministic simulation tool that aids in planning and

scheduling deployment of tankers in support of global military operations. It assigns

specific tankers to the required refueling points by attempting to minimize the number of

tanker aircraft and the number of sorties flown for each mission.

The flight routes are developed considering restricted airspace, threat exposure,

route deconfliction, and time over target requirements. This determines the fuel

requirements. Finally, CMARPS assigns tankers considering tanker resources, tanker

fuel consumption, air refuelable tankers, tanker reuse, and abort base requirements

(Logicon, 1996).

CMARPS has a number of flaws. First because of the complexity of the tanker

assignment problem, CMARPS can run extremely long, upwards of two weeks. It is also

a very complex program which is difficult for even an experienced user to run. Finally,

the extensive computing resources required “limits it efficiency, mobility, and versatility”

(Wiley, 2001: 22)

13 13

Hostler’s Air Refueling Tanker Scheduling Tool

Prior to 1987, SAC’s scheduling system could only assign one tanker to refuel

one receiver. As part of his 1987 AFIT thesis, Hostler developed a method to schedule

SAC’s fleet of air refueling tanker aircraft to perform more than one refueling per flight.

He formulated the problem as a generalized assignment problem, which allowed each

refueling request to be handled by more than one tanker as well as allowing one tanker to

handle more than one request (Hostler, 1987: 21). Hostler used three objectives:

maximizing the number of requests satisfied, maximizing the number of Category B

requests satisfied, and minimizing the total flight time needed to fulfill all missions.

Training requests were defined as either Category A, for normal air refueling training, or

Category B, for training in support of formal courses, exercises, deployments, rotations,

and tests.

A preemptive goal programming approach was used to solve the scheduling

problem. This approach allowed the user to identify and prioritize the desired goals

according to their importance. Each objective is then optimized based on its order of

importance (Hostler, 1987: 21).

Hostler developed a preprocessor to put the data input from the tanker and

receiver units in a proper format. This preprocessor determined all possible refueling

combinations, sifting out any infeasible ones (Hostler, 1987: 59). Once in the proper

format, the data was processed by an off-the-shelf integer programming package which

solved the generalized assignment problem.

Hostler’s work was a good first step in improving SAC’s scheduling process. For

simple training needs, the process would work fine. However for large deployments with

14 14

many tankers, this integer programming approach would ultimately run into the same

problems of long run times as CMARPS.

Quick Look Tool for Tanker Deployment

Russina, Ruthsatz, and Russ developed an Excel based spreadsheet tool to

evaluate tanker allocation for AMC in 1999. Written in Visual Basic for Applications

(VBA) macros, the Quick Look Tool’s goal was to determine the number of tankers

needed to support a desired deployment as well as determine how quickly the deployment

could be achieved (Wiley, 2001: 24). Tanker schedules were developed on a day-by-day

basis.

Several simplifying assumptions were used. These include using only one type of

tanker, allowing only one tanker to be assigned to a refueling point, knowing all refueling

points ahead of time, and having all aircraft use constant flight speeds. Although this

causes Quick Look to run very quickly, it decreases the accuracy of the schedules.

Additionally, schedule precision is inadequate in that schedules are in terms of days, not

the required hours or minutes (Tekelioglu, 2001: 10). Another drawback is the fact that

schedules can be built for only one tanker base at a time.

TAP Tool

Two AFIT masters students, Capehart (2000) and Tekelioglu (2001) built upon

the Quick Look Tool (QLT). Their model, called TAP, is an Excel based spreadsheet

model coded in VBA. It is composed of multiple worksheets which provide input to the

model regarding receiver groups and tanker bases. Capehart’s model enhanced QLT by

allowing the use of multiple tanker bases.

15 15

Both students interpreted the tanker assignment problem as an assignment

problem (AP) with time windows. Due to the nature of this problem, a heuristic method

was needed to obtain solutions in reasonable time (Tekelioglu, 2001: 10). Capehart

chose to use a simple tabu search methodology (Glover and Laguna, 1997) with static

short term memory to solve this problem. As problems increased in size and complexity,

the time required to get good answers grew very rapidly. Also, the tabu search method

employed used a static tabu tenure. Many runs had to be made to determine the proper

tabu tenure for each scenario.

Additionally, Capehart made many simplifying assumptions. Each tanker was

required to return to its origin based upon refueling, refueling occurred instantaneously at

the refueling points, fighter aircraft are escorted over the entire flight, not just over large

bodies of water, and wind and altitude effects on fuel burn and air speed are not modeled.

Refueling points are generated ahead of time based on the maximum distance a receiver

can travel on a full tank of fuel instead of trying to optimize the locations based on tanker

base locations. Despite these facts, TAP was a huge improvement over past modeling

efforts.

AMC improved the tool in the spring of 2000, by improving the graphical user

interface. Separate worksheets were built for tanker and aircraft performance data. Their

updates also gave the user the ability to easily make changes in the tanker aircraft

information (Tekelioglu, 2001: 13). Changes were not made to the tabu search heuristic.

Tekelioglu built upon Capehart’s work by using a primitive reactive tabu search

method. This had the benefit of automatically adjusting the tabu tenure used by the

heuristic based on the history of the search (Battitti and Tecchiolii, 1994: 128). This

16 16

eliminated the need to perform multiple runs to determine the optimal tenure value.

Tekelioglu also performed some validation on Capehart’s work and fixed some errors in

calculating refueling points. Tekelioglu’s model produced results similar to Capehart’s

work in similar periods of time.

Wiley’s Group Theoretic Tabu Search Tool

Wiley attacked the tanker assignment problem as part of his doctoral research. He

used a group theoretic tabu search methodology to solve the aerial fleet refueling problem

(the deployment part of the tanker assignment problem). His JAVA based program

(GTTS) has been shown to find much better results than those of the TAP tool. This is

partially due to elimination of some of the assumptions made by TAP. Tankers are

allowed to return to any tanker base instead of only their base of origin. Refueling points

are defined so as to reduce the distance that tankers must travel to refuel receivers.

Tankers can service more than just one refueling point (Wiley, 2001: 108).

Although GTTS provides very good results, there are some downsides. The main

drawback is the amount of time it takes to develop a schedule. Runs take upwards of 30

minutes to produce good results (Wiley, 2001: 120). The TAP tool typically took half

that time for the same scenario (Tekelioglu, 2001: 53). Another problem was the fact that

Wiley’s tool was not spreadsheet based, which created some difficulties with inputting

receiver group information into the model. Future work is planned that will allow

spreadsheet data to be modified as input files to the GTTS.

Barrel Allocator

The Barrel Allocator system (BA) was developed by Carnegie Mellon University

(CMU), under a grant from the Defense Advanced Research Project Agency (DARPA).

17 17

It is a system for “solving complex transportation and logistics planning and scheduling

applications” (Barrel, 2002). BA is an object oriented program that runs on a UNIX

platform and is based on a scheduling framework (OZONE) developed at CMU. This

framework is designed to insure rapid configurations of scheduling systems to

incorporate the needed constraints, rules, and characteristics of a given problem set

(Barrel, 2002). The framework was developed in Commonlisp (for scheduling) and

JAVA (for the user interface).

The Barrel Allocator grew out of early attempts to schedule strategic airlift

missions. Based on early successes, AMC and DARPA funded an initiative to extend the

OZONE framework to cover all aspects of the airlift mission. This tool was to become

part of the Consolidated Air Mobility Planning System (CAMPS) with the ultimate goal

of being used operationally by the Tanker Airlift Control Center.

The Barrel Allocator performs a range of mission planning and scheduling tasks

including generation of airlift mission schedules, generation of tanker missions,

visualization and analysis of schedules, and mission merging. It is planned to support

what-if analysis of options for mission planners (Barrel, 2002). Results so far have been

impressive –“a 2 week interval of missions using approximately 1000 missions and 5000

flights took 45 seconds to schedule” (Barrel, 2002).

Currently the software does not run on a PC; however, it is envisioned that BA

will eventually run on PC workstations. The main drawback is that tanker refueling is

scheduled solely in support of airlift missions. The deployment of fighter and bomber

aircraft is not supported.

18 18

Heuristics

Heuristics are defined as a method “for solving problems by an intuitive approach

in which the structure of the problem can be interpreted and exploited intelligently to

obtain a reasonable solution” (Silver, 1980: 153). Heuristics are often used to find near-

optimal answers to complex problems in reasonable amounts of time. Zanakis and Evans

present ten reasons for using heuristics. These reasons are presented below (Zanakis and

Evans, 1981: 85-86):

1. Inexact or limited data used to estimate model parameters may contain
errors much larger than that of a heuristic solution.

2. A simplified model may be used, which presents an inaccurate

representation of the real problem. Therefore the exact answer to an
approximate problem is found which may be worse than the approximate
answer to an exact problem (which is what a heuristic finds).

3. A reliable exact method may not be available.

4. An exact method may be available, but it may be unattractive due to

excessive computer requirements or computer run time.

5. Heuristics can often be used to develop starting solutions quickly to improve

the performance of an optimization program.

6. The need for repeatedly finding problem solutions may result in significant

computer savings.

7. A heuristic solution may be good enough. This is especially true when

considering the time and resource savings.

8. The simple nature of heuristics are often easily understood by users which

results in increased confidence in the solutions.

9. Heuristics can often be used to gain insight into complex problems, which

aids in modeling the problem correctly.

10. Resource limitations such as time, money, and computer resources may

force the use of a heuristic.

19 19

According to Silver, a good heuristic should have four properties. It should be

solved with realistic computational effort. The solutions generated should be close to the

optimal solution on average. The chances of a poor solution should be low. The

heuristic should be simple for the user to understand (Silver, 1980: 155). Zanakis and

Evans add that good heuristics should have reasonable core storage requirements.

Heuristics should be robust in that the method should obtain good solutions for a wide

variety of problems and should be insensitive to changes in the parameters. Heuristics

should be able to handle multiple starting points and produce multiple solutions

depending on the input parameters. Heuristics should have good stopping criteria which

takes advantage of the search history, and the user should be able to interact with the

method (Zanakis and Evans, 1981: 86-87).

Many heuristic methods have been developed. A few of the most recent

developments in the field of heuristics are presented below.

Tabu Search

Tabu search was developed by Fred Glover in 1986. Tabu search allows the user

to cross boundaries of feasibility or local optimality, which were usually treated as

barriers (Glover and Laguna, 1997: 1) Tabu search explores the solution space by

moving among the possible solutions. A move is made to some best solution in the

neighborhood of the current solution. This move is not always an improving move.

Recently visited solutions are made “tabu” which prevents these solutions from being

revisited. This prevents cycling from occurring and helps the heuristic avoid getting

stuck at a local optimality. The tabu nature of previous solutions also helps direct the

search to visit previously unexplored regions of the solution space.

20 20

Tabu search relies heavily on both short term and long term memory to control

the search. A tabu list, which consists of recently visited solutions, helps determine

which direction the search will take. The size of the list determines how long a solution

will remain tabu. Two key elements of tabu search are intensification and diversification.

Intensification intensifies the search in a region which has previously produced good

solutions. Diversification is used to move the search to an area of the solution space

previously unexplored. By using intensification and diversification, tabu search can

explore a fraction of the solution space in a reasonably short period of time and find very

good solutions.

Tabu search has been used quite extensively on a number of different problem

types. In his book, Glover details many applications of tabu search. These include

planning and scheduling problems, vehicle routing problems, assignment problems,

integer programming, and many others (Glover and Laguna, 1997: 267-303)

Ant Colonies

Ant colony optimization metaheuristics were developed in the early 1990s by

Marco Dorigo. These ant colony approaches are based on the observation that real ants

have an uncanny ability to find the optimal path to a food source (Bullnheimer, 1997). It

was found that ants leave a trail of pheromone behind them. The amount of pheromone

left behind is dependent on the length of the path taken as well as the quality of the food

source (Bullnheimer, 1999: 322). Later ants are influenced by this pheromone, taking the

path with the heaviest amount of pheromone. As time goes by, the optimal path will

emerge as all ants choose to take the path with the heaviest amount of pheromone.

21 21

The ant colony heuristic imitates this behavior of ants. Artificial ants are used to

explore the solution space. They make their moves based on some defined probabilistic

function of the local neighborhood. Through these moves, the ants build possible

solutions to the problem at hand. After a solution has been built, the ants lay down a

weighting factor (pheromone) on the path that the ant took based on the quality of the

solution found (Dorigo, 1999). The pheromone trail will be used by ants in future

iterations to direct the search.

The ant colony metaheuristic has been used quite successfully for many shortest

path type problems. Dorigo first applied it to the Traveling Salesman Problem. Later

work has been performed on the quadratic assignment problem, vehicle routing problems,

and network routing problems, to name just a few applications (Corne, 1999:30).

Scheduling Theory

This section introduces concepts from scheduling theory, especially as it

relates to project management and the targeting process. “Scheduling concerns

the allocation of limited resources to tasks over time. It is a decision-making

process that has as a goal the optimization of one or more objectives” (Pinedo,

p.1, 1995). The scheduling process exists in virtually all settings, whether in

commercial or military environments. It is especially important in manufacturing

arenas. In the military, scheduling is widely used in settings such as weapon

system development (acquisition) and flight scheduling (Calhoun, 2000: 22).

A schedule is made up of resources, tasks, and objectives. Resources may

be machines in a workshop, runways at an airport, aircraft in a squadron, tanker

22 22

aircraft available and so forth. Tasks may be operations on an assembly line,

stages in a construction project, attacking targets on a Target Nomination List

(TNL), or refueling points, for example (Calhoun, 2000: 23). Objectives include

the minimization of the completion time of the last job (makespan), minimization

of the maximum tardiness (worst violation of the due dates), and minimization of

the total number of late tasks, to name a few (Pinedo, 1995: 1).

Parallel Machine Models

A machine can be thought of as a finite resource required for completing a

task, such as a drill press in a job shop, cashiers in a checkout line, or tanker

aircraft in theater. The simplest model is that of the single machine, and many

algorithms have been developed to solve these simple models. However, in most

real-world settings, the occurrence of parallel machine models is more common

(Pinedo, 1995: 61). Heuristics have been developed which can solve these more

complex problems. When parallel machines are present, job j requiring

processing on a single machine, may be processed on any of the machines in the

shop (Calhoun, 2000: 24). For example, if the job is to refuel an aircraft, it can be

accomplished by any of the tanker aircraft in the area. Parallel machines can be

identical (jobs are processed at the same rate regardless of machine chosen) or

unrelated (process time depends on which machine is selected).

One of the most common objectives of scheduling problems is that of

minimizing the makespan, or completion time of the last job. Often schedulers

must deal with balancing the load across the machines in parallel; by minimizing

the makespan, a good balance is ensured (Pinedo, 1995: 61). Scheduling parallel

23 23

machines may be considered a two-step process. First, determine which jobs

should be allocated to which machine. Second, determine the sequence of jobs on

each machine, subject to any precedence constraints (Pinedo, 1995: 62).

24 24

Precedence Constraints

Precedence constraints define timing requirements between activity pairs within

projects. The most common type of precedence constraints are of the finish-start variety

and are used to specify that a predecessor activity must end before its successor activity

More complex activity timing requirements can be expressed by generalized precedence

constraints which dictate a minimum lag time between an endpoint of a predecessor

activity and an endpoint of a successor activity. (Calhoun: 2000:25)

Precedence constraints among activities in a project may make the project hard to

explain verbally or via a mathematical model. Therefore graphical representations of

precedence constraints, such as activity on the arc (AOA), are frequently used. In an

AOA representation, a node designates an event in the network and an arc is directed

from node i to node j if and only if event i must be completed before the activity leaving

node j can begin. The duration of the activity is indicated on the arc. The boldface

arrows denote the critical path in Figure 1. The AOA model is usually associated with

critical path method analysis (see next section) and is the basis for most computer

implementations (Calhoun, 2000: 27).

1 2

3 4 5

6 7

8 9

4

3 3

9

8

6

12

12

6

8

6

Completion
time = 32

Completion
time = 30

 Figure 1. AOA Network Representation

25 25

Precedence constraints may also be represented by an activity on the node (AON)

network. In an AON representation, a node designates an activity in the network and

may display information about the activity such as duration, early start (ES), early finish

(EF), late start (LS), and late finish (LF). Arcs depict precedence relationships. A typical

node in an AON network would be:

The advantage of using an AON network is that the calculations for project

completion times may be displayed directly on the nodes by using the Critical Path

Method forwards and then backwards (Calhoun, 2000:28).

Act-
ivity

ES EF

LS LF

1 2

3 4 5

6 7

8 9

4

3 3

9

8

6

12

12

6
8

6

4

0 4 13

0 3 6 3 6 12

13 21
24 32

12
24 30

24

Term
0

32

32

24

26

24 16

24 12

12 6 6 3 3 0

167 7 3

Figure 2. AON Node Representation

Figure 3. AON Network Representation

26 26

Critical Path Method

The Critical Path Method (CPM) for project scheduling uses either an

AON or an AOA network for graphically portraying the relationships between the

tasks and milestones in a project. When the number of resources are unlimited, or

at least as large as the number of jobs, the CPM technique yields a schedule with

an optimal makespan. Pinedo defines the CPM algortithm as: (Pinedo, 1995: 65)

1. Schedule the jobs one at a time starting at time 0.

2. Whenever a job has been completed, start all jobs for which all

predecessors have been completed (i.e. all schedulable jobs).

The critical path is the set of jobs that cannot be postponed without

delaying the earliest finish of the final schedule. These jobs are called critical

jobs while jobs not on the critical path are called slack jobs (Pinedo, 1995: 65).

The length of the critical path (or any other path) is equal to the sum of the

durations of every activity on that path. If the earliest finish equals the due date,

then duration of the entire project is equal to the length of the critical path

(Pinedo, 1995: 65).

Summary

This chapter began by providing background on the tanker assignment

problem. A number of possible ways to interpret the problem are overviewed.

This is followed by a look at previous attempts to schedule tanker assets. An

overview of heuristics is provided focusing on two more recent methods: tabu

search and ant colony optimization. Finally, some key elements of scheduling

theory and project management were outlined including network diagrams and the

27 27

critical path method. The next chapter applies some of these techniques to the

Tanker Assignment Problem.

28 28

III. Methodology

Introduction

This chapter details how the topics and methods from Chapter 2 were applied to

the tanker assignment problem. An explanation of the vehicle routing problem (VRP)

formulation used to solve the problem is provided. The methods used to convert the

tanker assignment problem into a VRP are discussed. The chapter finishes with a

detailed look at the ant colony heuristic and scheduling methodology developed to

schedule tanker assets.

Vehicle Routing Problem

The VRP can be represented by a complete weighted graph G = (V, A, d) where V

is a set of vertices and A is a set of arcs and d is the distance of the arcs. The vertices

consist of the depots and the customers and the nonnegative weights dij associated with

each arc represent the distance between vi and vj. Each vehicle has capacity and

maximum route delivery constraints. The goal is to find a route where:

1. each customer is visited exactly once by exactly one vehicle

2. all vehicle routes start and end at the same depot

3. the total demand of each route much not exceed the capacity of the
vehicle

4. the total route length cannot exceed a given bound

29 29

To form the VRP, let nc be the number of customers. Let v index nv vehicles and

let v
ijx equal one if vehicle v goes from i to j and zero otherwise. Let cij be the cost of

traveling from customer i to customer j. Let tij be the time it takes to travel from i to j. Let

sj be the service time at j. Let R be the limiting range in time of the vehicle. To account

for the vehicles’ capacities to deliver products, let di be the demand of customer i and D

be the capacity of each of the vehicles. This assumes the vehicles are identical, or

homogeneous.

The tanker assignment problem can be viewed as a specific form of the vehicle

routing problem. Since the Air Force uses multiple tanker platforms, the VRP has

heterogeneous vehicles. To account for heterogeneous vehicles, many of the variables

need to be indexed by the vehicle v: cij becomes v
ijc , sj becomes v

js , R becomes Rv, and D

becomes Dv.

Additionally, since receiver groups have defined departure and delivery dates,

there are time windows associated with the refueling of aircraft; thus, we have a vehicle

routing problem with time windows (VRPTW). Generally, the tanker may arrive early

but must then wait until the beginning of the time window, which is not desirable. Let ei

be the earliest arrival time, let li be the latest arrival time, and let si be the service time for

customer i. Let tij be the travel time between customers i and j. Let Ai and Ti be the time a

vehicle arrives at customer i and the time it begins servicing customer i, respectively. Let

Wi be the time spent waiting for service to begin at customer i. Finally, since there are

multiple tanker bases around the world, there are multiple depots available in the vehicle

routing problem.

30 30

The objective is:

 ∑∑∑
= = =

=
nv

v

nc

i

nc

j

v
ij

v
ij cxZ

1 1 1
min (1)

 {Minimize total cost}

subject to

 ∑∑
= =

=∀=
nv

1v

nc

0i

v
ij nc..1j1x (2)

 ∑∑
= =

=∀=
nv

1v

nc

1j

v
ij nc..0i1x (3)

 nv..1vRWxsxtx v
nc

0i

nc

1j
j

v
ij

nc

0i

nc

1j

v
j

v
ij

nc

0i

nc

1j

v
ij

v
ij =∀≤++ ∑∑∑∑∑∑

= == == =

 (4)

 { }1,0xv
ij ∈

 nv..1v,nc..1j,nc..0i === (5)

 nv..1v1ncx
nc

1i

nc

ij
1j

v
ij =∀−≤∑∑

=
≠
=

 (6)

 ∑
∈

=∀≤
vVi

v
i nv..1vDd (7)

 jj
v
ij

v
ji

v
ij TWtsTthen1xif ≤+++= (8)

 nc..1ilTe iii =∀≤≤ (9)

31 31

Constraint (2) specifies that only one vehicle can visit each customer. Constraint

(3) ensures that only one vehicle can leave each customer. Constraint (4) limits the time

that a vehicle can be made available. Constraint (5) defines the domain based on the size

of the problem. Constraint (6) is a standard subtour breaking constraint. Constraint (7)

limits the capacity a vehicle can carry, while constraint (8) puts a time limit on the routes.

Finally, constraint (9) defines the time window for each customer.

Tanker Assignment Problem as a VRP

A VRP tries to determine the best routes for a number of vehicles to make to

service a given number of customers. To interpret the tanker assignment problem as a

vehicle routing problem, the tankers are the vehicles, the tanker bases are the depots, and

the refueling points are the customers.

The key to this is determining where the refueling points should be located. I

initially determine my refueling points like Capehart (2000). First, find the great circle

distance from the receiver group’s base of origin to its destination. Then determine the

distance the receiver group can travel before it reaches its fuel reserve limit. This

distance is determined simply by using fuel flow; it does not incorporate any

sophisticated fuel burn equations which account for other problem specific factors like

wind and cargo. For the initial leg of the flight, the amount of fuel burned during the

climb is also accounted for. The offload at each refueling point is equal to the amount of

fuel needed to fill each aircraft to its maximum fuel load, except for the final refueling

point where only the necessary amount of fuel needed to get the receiver group to the

destination base is offloaded.

32 32

A key aspect of the vehicle routing problem is that each customer is visited only

once by exactly one aircraft. The offload required at a refueling point may exceed the

offload capacity of a single tanker. This is especially true when considering long

distance sorties for bombers or when using large receiver groups. To combat this, I

determine the minimum number of tankers required to refuel each refueling point and

then split the large refueling point into a number of smaller refueling points, each with

equal offload amounts.

Each customer has a set service time that it takes a vehicle to perform a task. For

simplicity sake, it is assumed in this problem that tankers can instantaneously pass the

desired fuel offload to the receiver groups, resulting in a service time of zero.

Additionally, although the VRPTW allows a vehicle to wait at a customer if it arrives

early, this is not accounted for in this program. Thus, waiting times are eliminated from

the schedule.

 A final consideration with the tanker assignment problem is the fact that fighter

aircraft require tanker escort over large bodies of water. To deal with this matter, I create

an additional refueling point with zero offload to match the coordinates of each distinct

refueling point. I require that a single tanker must be assigned to each pair of zero

offload refueling points in a receiver group. This is discussed in later sections.

Ant Colony Metaheuristic

For the purpose of this research, an ant colony metaheuristic was chosen.

Artificial ants are defined which choose which customers to add to the route in a step-by-

step process. When no additional customers can be added without exceeding either

33 33

capacity or route length constraints, the ant returns to the depot. Pheromone (τ) is then

deposited along the route taken.

The ant determines its path based on two factors: (1) the closeness of the next

customer and (2) the pheromone trail. Closeness, nij, is a static heuristic variable. It is

simply the inverse of the distance between points i and j, and specifies how promising the

choice of that customer is. The pheromone trail, ijτ , is a dynamic variable which

signifies how good the choice of that customer was. It is computed by adding the

closeness values of all arcs used in the route. The following proportional rule determines

which customer will be visited next by the ant where Ω is defined as the neighborhood of

the current customer.

 Ω∈=
∑

Ω∈

j

h
ihih

ijij

n
n

p vif
][][

][][
ij βα

βα

τ
τ

 (10)

The probability distribution is biased by the parameters α and β which determine

the influence that the pheromone trail and the local heuristic have on the selection

process. If α is equal to zero, then the function acts like a greedy algorithm simply

choosing the closest customer. If β is equal to zero, then only the pheromone trails are

used to select customers. This would lead to all ants choosing the same tour, which in

general would lead to a suboptimal solution. It has been experimentally found by Dorigo

that parameter values α =1 and β = 5 were good (Corne, 1999: 22).

A key aspect of pheromone trails is the concept of evaporation. To prevent ants

from converging too quickly to a suboptimal path, pheromone trails are allowed to

34 34

“evaporate” in order to encourage exploration of different paths during the search process

(Bonabeau, 2000: 74). This is done by decreasing the current pheromone level of an arc

by some exponential variable, ρ , before adding the new pheromone for the new route.

For instance when an ant moves from city i to city j, the pheromone along the arc ij

changes based on the following formula where :

 ∑ =
+= m

k
k

ij
old

ij
new

ij 1
τρττ (11)

Dorigo experimentally found that a parameter setting of ρ = 0.5 was good (Corne, 1999,

22).

 The number of artificial ants used in the heuristic is set equal to the number of

customers in the VRP and each ant starts its tour from a separate customer. Initially we

place one ant at each customer. Once this is done, we follow a two step process of first

building vehicle routes and then updating the pheromone trail. This process is continued

for a given number of iterations.

 Because the tanker assignment problem more often than not includes multiple

tanker base locations, this results in a multiple depot vehicle routing problem with each

tanker base acting as a depot. To solve this problem, I choose to break the problem up

into multiple vehicle routing problems with each tanker base acting as a depot in its own

problem. Using the ant colony metaheuristic described prior, the VRP is solved for each

tanker base.

Once these individual problems are solved, the pheromone trails constructed from

each problem are then added together to construct a pheromone trail matrix for the entire

35 35

problem. The ant colony heuristic is then used a final time to construct entire solutions to

the given problem.

Scheduling

The ant colony metaheuristic is used to construct possible solutions. Once these

solutions have been produced, it must be determined whether or not these solutions are

feasible in regards to the timing constraints. Using an AON network structure, it is

possible to determine the earliest start and latest start for each refueling point. It is also

possible to determine the earliest finish and latest finish for the refueling points; however

since it is assumed that refueling operations are instantaneous as far as offload goes, these

finish times are the same as the start times.

In terms of scheduling theory, we have a job shop where the receiver groups can

be interpreted as jobs, the refueling points can be seen as operations per job, the tankers

are the machines and the processing times at each machine are equal to zero. We also

have precedence constraints on the jobs where refueling point 1 for receiver group 1 must

be scheduled before refueling point 2 of receiver group 1, and so on. If we assume that

on average there are q refueling points per receiver group, m tankers, and n receiver

groups, then there are as many as [(nq/m)!]m schedules.

There are numerous dispatch heuristic methods which can be used to build a

schedule one step at a time. These methods can be very inexpensive to find solutions to

complex problem and can often be used repeatedly to develop more sophisticated search

heuristics. Some of the more popular dispatch heuristics include the Earliest Due Date

36 36

(EDD), the Weighted Shortest Processing Time (WSPT), First Come First Served (FCFS)

and the Minimum Slack Time (MST) (Morton, 1993: 374).

To build the schedules for the given routes, I chose to use an EDD dispatch

heuristic. Taking the routes generated by the Ant Colony heuristic, I parse out the routes

to determine which refueling points are assigned to which tanker bases. The next step is

to determine how long it takes for the assigned tanker to reach the first refueling point for

each receiver group. This is important, because even though we already have a time

window associated with each refueling point, we do not want our receiver groups to wait

for our tankers to arrive and thus this calculation determines the true earliest start time a

refueling point can be hit by the receiver group. Once we set the refueling time for the

first refueling point in the receiver group, then the refueling point for the rest of the

refueling points for the receiver group can be calculated. Once again we assume no

waiting time for the receiver groups.

Once we have the updated time windows developed for the first refueling point of

each receiver group, we can schedule the tankers based on a least slack time rule. We

determine which receiver group has the least slack built in their schedule and start

scheduling this receiver group first. If a conflict occurs, such as two tankers from the

same base are required at different refueling points at the same time, then we can either

assign another tanker from that same base to service the second refueling point or we can

delay the receiver group’s start time such that it can be serviced by the first tanker at a

later time, as long as the receiver group still arrives at its destination point on time. This

process is continued for all refueling points.

37 37

Visual Basic With Applications

Visual Basic with Applications (VBA) is Microsoft’s common scripting language.

It is included in all Microsoft Office applications and is also part of many applications

from other vendors. The key to the VBA language is that you can create structured

programs directly within Excel.

 There are a number of reason why it was decided to develop this program in

VBA. First, AMC desired a tool that was easy to use. One of the weaknesses of their

current tool, CMARPS, was the difficulty associated with learning and using the

program. Since most Air Force members have a familiarity with Excel and Excel based

spreadsheets, it was the obvious choice as the platform for this tool. Since VBA is the

built in scripting language for Excel, it too was an obvious choice. Furthermore since

previous efforts were also Excel based spreadsheets coded in VBA, these presented a

good starting reference for this work. Additionally, Excel’s built in functions provides a

good means to analyze results.

Measurement of Results

Ideally, it would be nice to compare the results obtained with this tool to those

developed by CMARPS. However, due to the time needed to learn how to efficiently use

CMARPS and the lack of trained personnel at AMC, it was impossible to obtain

CMARPS solutions for the desired scenarios. Results from this model are compared to

those obtained using the previous TAP tool developed by Capehart and Tekelioglu.

Some very simple CMARPS scenarios for a single aircraft and a small receiver

38 38

deployment have been provided by AMC. The results obtained by CMARPS are checked

against this model. The next chapter reports the results of model testing.

39 39

IV. Results and Analysis

An Excel-based tool was developed to input a number of receiver group requests

and output a mission plan consisting of tanker assignments to refueling points. Two

sample deployments were provided by AMC for testing this new tool. In addition, AMC

provided the bed-down locations of KC-135s around the globe.

Since this tool considers all tankers within range of refueling points, it is

necessary to decrease the actual numbers and locations of tankers in order to increase the

computational efficiency of the tool. For example, there are several Air National Guard

and Air Force Reserve bases in the U.S. that contain tanker aircraft. Many of these bases

are within range of the early refueling points of a deployment. This large number of

available tankers greatly increases the complexity of the problem, which in turn increases

the time needed to obtain a solution. Therefore, we first run the program with tankers

located at active airbases. If the tool returns a solution with no tanker assigned to a

refueling location, we can then go back and start placing tankers at other bases originally

in the list of bed-down locations so that there is a tanker capable of satisfying the receiver

group’s requirements at that refueling point.

Southeast Asia Deployment

The first deployment tested involves receiver groups departing the continental

U.S. and arriving in Southeast Asia. Table 2 provides a list of the 11 receiver groups

shown in Figure 4.

40 40

Figure 4. Southeast Asia Deployment

The tanker bases activated for this deployment include McConnell, Mountain

Home, Grand Forks, Fairchild, Kadena, and Eielson, with 15 KC-135 tankers located at

each base. Tankers located at these bases are capable of satisfying all the receiver

groups’ fuel requirements during the deployment. Although the model supports the use

of waypoints, none are used for this deployment. A waypoint is a location the receiver

group must first reach before heading towards their destination base. Our code allows the

user to input one waypoint for each receiver group.

41 41

Table 2. Receiver Groups for Southeast Asia Deployment

Aircraft
Type

Number
of

aircraft
in group

Origin Destination ALD RDD

F117 2 Holloman Osan 1 5
F15 6 Mountain Home Osan 1 5
F15 6 Elmendorf Osan 1 5
F16 6 Eielson Osan 1 5

A/OA10 6 Eielson Osan 1 5
B1 1 Mountain Home Andersen 1 5
B1 1 Ellsworth Andersen 1 5
B1 1 Dyess Andersen 1 5
B52 1 Barksdale Andersen 1 5
B52 1 Minot Andersen 1 5
F117 2 Holloman Osan 1 5

This initial mission plan needed a total of 27 tankers. After running the

scheduling procedure, a final schedule requiring 15 tankers was found. The best solution

found using the model required 91,266 tanker miles and was obtained in under 3 minutes

on a 700 mHz Pentium III.

The initial mission plan generated by the previous TAP models by Capehart and

Tekelioglu required 28 tankers. After running their tabu search methodology, a final

schedule was constructed requiring 13 different tankers. The best solution required

120,461 tanker miles and was obtained in 15 minutes on a 700 mHz Pentium III.

42 42

 Table 3. Best Schedule for Southeast Asia Deployment

Tanker / Tail Number Tanker
Takeoff

Tanker
Land RP #1 RP #2 RP #3 RP #4 RP #5

MOUNTAIN HOME AFB / 9 1.657064 7.701881 1 2 3 4
EIELSON AFB / 10 3.204402 14.80486 4 5 6 8
KADENA AB / 81.80084 90.14088 8 7 8 9 10
EIELSON AFB / 13 1.871436 4.350696 11 12 13
EIELSON AFB / 84.50398 93.2129 13 16 14 16
EIELSON AFB / 85.96849 93.2129 16 15 16
EIELSON AFB / 85.96849 100.9233 16 18
KADENA AB / 91.76464 95.11093 18 17 18
EIELSON AFB / 14 2.406679 8.972357 19 21
EIELSON AFB / 82.36301 88.92869 21 20 21
EIELSON AFB / 82.36301 96.7238 21 23
KADENA AB / 87.59273 91.39314 23 22 23
EIELSON AFB / 15 0 5.020739 24 25
EIELSON AFB / 74.18486 85.199 25 26 27
EIELSON AFB / 12 1.665528 8.944501 28 30
EIELSON AFB / 85.32761 92.60659 30 29 30
EIELSON AFB / 85.32761 102.2807 30 31 32
KADENA AB / 11 6.940407 13.89736 33
KADENA AB / 8 3.672733 14.85161 34
KADENA AB / 4 5.202388 15.63538 35
KADENA AB / 5 5.202388 15.63538 36
EIELSON AFB / 1 3.358625 14.76722 37
EIELSON AFB / 2 3.358625 14.76722 38
EIELSON AFB / 3 2.106071 15.49878 39
MOUNTAIN HOME AFB / 6 3.272273 9.31709 40 41 42 43
EIELSON AFB / 7 4.819611 16.42007 43 44 45 47
KADENA AB / 62.35475 70.69479 47 46 47 48 49
 Tankers Used: 15
 Total Tanker Distance: 91266.43 miles

CMARPS vs. TAP Tool

In order to compare the effort required by CMARPS to that of the TAP tool, we

use two simple mission plans. The first mission plan involves a single B-52 receiver

group scheduled to fly from the U.S. to Souda. We look at both one-way and round-trip

43 43

flights. AMC is interested in the comparison of computation time and total offload

required by the B-52 for this mission. Table 4 displays the comparison of the two tools.

Table 4. Tool comparison for B-52 mission

 One-way (KBAD→LGSA) Round-trip
(KBAD→LGSA→KBAD)

 Setup Time
(min)

Runtime
(min)

Offload
(K lbs.)

Setup Time
(min)

Runtime
(min)

Offload
(K lbs.)

CMARPS 20 5 0 20 5 250
TAP (Capehart) < 1 0.05 19.2 < 1 0.06 240
TAP Tool < 1 < 0.01 19.2 < 1 < 0.01 240

The difference in offload required for the one-way flight is probably due to the

climb-fuel required by the B-52. The B-52 can fly 5663 miles on a full tank of fuel. The

total flight distance for this mission is 5428 miles. However, after the B-52 uses 19,200

lbs. of fuel to climb to altitude, it can only travel 5213 miles with the remaining fuel on

board. Depending on the distance the B-52 travels during its climb to altitude, it may

have less than 5213 miles remaining in the flight. This is obviously the case in the

CMARPS run, since there was no requirement for a refueling point. In our tool, we

assume that every aircraft type flies 100 miles during the climb. In this case, the B-52

has 5328 miles remaining when it reaches altitude, which is greater than the number of

miles the B-52 can fly with its remaining fuel. The actual number of miles traveled

during an aircraft climb to altitude is dependent on the winds and the target altitude.

The second small mission for comparison involves three fighter receiver groups.

The groups consist of 6 F-15s, 6 F-16s, and 2 A-10s. Their destination base is Lajes AB,

while their origin bases are St. Louis-Lambert International, Duluth, and Hurlburt Field,

respectively. Again, we are interested in the time to run this mission and the total offload

44 44

required for the receiver groups. Table 5 compares the results of CMARPS with that of

the TAP tool.

Table 5. Tool comparison for fighter missions

 Total Offload Required
Set-up Time

(min)
Run Time

(min) F-16 F-15 A-10

CMARPS 20 - 26 9 - 15 105.1 75.5 28.2
TAP Tool 1 < 0.01 125.4 80.4 38.5

The total offload required for each aircraft provided by the TAP tool is reasonably

close to those provided by CMARPS, according to Maj. Dave Ryer, AMC. The

computation time for the TAP tool is significantly less than that of CMARPS. This

computational time benefit is of major interest to AMC.

Model Improvements

 A number of improvements have been made to this model. First is the ability for

tanker aircraft to support multiple refueling points. The model of Capehart and

Tekelioglu only allowed a tanker to refuel one refueling point. This is not operationally

realistic and was extremely inefficient. Besides increasing realism, allowing tankers to

refuel multiple refueling points decreases the number of tankers needed to support a

deployment, as well as decreasing the total flight distance needed.

 Another improvement was the ability to model several types of tankers. Previous

TAP models only modeled the KC-135R aircraft. This version models the Air Force

tanker fleet. In addition, it allows the user to “invent” new tanker aircraft. Thus this tool

can be used to test new aircraft designs and analyze their impacts on current operations.

45 45

 A graphical user interface (GUI) was added to the model which allows the user to

access the various worksheets by way of call buttons. Each of the input screens also have

call buttons which allow the user to search various databases for information necessary

for that input screen. For instance, when defining the receiver group flight paths, the user

is allowed to access the worldwide airfield directory to double check airfield code names.

Finally each input screen has error checking which insures that all of the information

entered is of the proper format, that the information is correct , i.e. that the airfield code

name actually exists, and that all required information is entered. If errors are found, the

user is directed as to how to fix the input. This insures that the model cannot be run

without having all information required, thus reducing the possibility of the model

crashing.

 Finally, this tool fixes problems with previous TAP tools. Although Capehart and

Tekelioglu allowed waypoints to be entered, they never tested this ability. Thus they did

not see that the way their models calculated the effect of waypoints was incorrect. In

fact, waypoints were not considered when generating refueling points due to an error in

the way the inputted waypoints coordinates were defined in the model code. This

problem has been fixed in this model.

46 46

V. Conclusions

Review

 Scheduling of aerial refueling operations is a complex task. Because of the nature

of the problem, the time necessary to solve even small problems to optimality can be

great. For that reason, heuristic methods can be used to provide very good solutions to

the Tanker Assignment Problem in reasonable time.

This research built off the previous work by Capehart and Tekelioglu, who

developed spreadsheet models using tabu search metaheuristics to schedule tanker

refueling operations. It was found that these models did provide very good solutions in

much faster time than the model currently used at AMC.

For this research, an ant colony metaheuristic was developed which was used in

the spreadsheet model to generate tanker refueling results. This ant colony routing

heuristic was combined with a simple least slack time algorithm to find solutions to the

problem. It was found, through comparison to the previously developed spreadsheet

models, that this ant colony based model found much better solutions in terms of

minimizing the amount of distance tankers are required to travel. It also did this in much

smaller periods of time.

Since almost every computer in the Air Force contains Microsoft Office with

Excel, this tool is very portable. Also, most users are familiar with how to enter and

manipulate data within Excel spreadsheets. This increases the usability of the tool and

allows new personnel to use the tool with minimal training.

47 47

Recommendations

This model provides very good solutions very quickly. However, in order to do

this, some sacrifices are made in terms of realism. To produce a more accurate tanker

schedule, it would be advisable to make some of the following changes. Currently wind

effects are not modeled. Adding wind effects would have dramatic impacts on the

distance that aircraft can travel on a tankload of fuel, as well as effect the airspeed that an

aircraft can travel. Including wind would alter the placement of refueling points as well

as impact the time that these refueling points are serviced. The model currently has

equations which include wind effects, as well as a worksheet for entering wind data; it is

just a matter of determining the proper wind speed and directions to use. Additionally,

this model does not account for aircraft having to change speed during air refueling, or

account for the fact that refueling does not occur instantaneously. Normally, tankers

decrease their cruise speed during refueling. Tankers then match the speed of fighter

aircraft during the escort phase. A calculation would be required to incorporate these

changes in speed to determine any modifications to the distance a tanker can travel

Due to current Air Force regulation, fighter aircraft require tanker escort over

open bodies of water. However, in this model for simplicity, all fighter paths are

assigned tanker escort, even over land. It would not be difficult to alter the model such

that only paths over water get escorts. The model currently has code which could either

call a database of land formations or some procedure which would determine whether or

not the flight path between refueling points requires escort. Besides greater realism, this

added improvement might decrease the number of tankers required for a given solution.

48 48

The model allows the user to define the flight path for a receiver group through

the addition of in flight waypoints. Currently, only one waypoint can be entered for each

receiver group. It is recommended that the model be upgraded so as to allow users to

enter an unlimited number of waypoints. The added benefit of doing this is that doing so

would allow for the model to account for restricted airspace. Additionally the use of

waypoints is important, since most pilots prefer not to fly at extreme northern latitudes

due to the lack of emergency landing locations.

Currently, the model only performs scheduling for receiver groups in a

deployment role, that is for ferrying aircraft from one area of the world to another area.

Tanker refueling can also be used in an employment role, increasing the range of strike

aircraft. It would be highly recommended to add the ability to determine the refueling

schedules in support of strike operations. The only changes needed to the model would

be in the way refueling points are generated. The model currently has the ability to

define air refueling points as well as allowing strike missions to be entered in the input

screen.

Another addition of great importance would be the ability to visualize the

generated schedules and routes. Gantt charts could be used to visualize the schedules.

Some type of map function would be useful to see the actual receiver group routes as well

as tanker routes. These two features would be useful in quickly determining if any errors

had been made during the modeling process.

The code for this tool is written in Visual Basic for Applications (VBA) within

Excel. In order to run a different deployment, the current set of receiver groups must be

replaced with a new set. This includes the aircraft type, number of aircraft, base of origin

49 49

and destination, RLD and RDD. It would be nice to have the VBA program refer to

another workbook containing the list of receiver groups. In this way, the tool would be

independent of the input data and would only contain the aircraft performance and tanker

location data.

Although most users are comfortable using Excel worksheets to manipulate data,

modifying the code to Java would be an improvement. The Java code can be written to

import the receiver group data, which the user inputs through an Excel interface. Java is

platform independent and is object oriented. This object orientation could increase the

manageability of the code and possibly decrease the computation time.

Another feature that could be added would be the ability to allow the user to

determine what type of schedule they might wish. Currently the model finds the schedule

that minimizes the flight distance of the tanker fleet. It would not be difficult to add the

ability for a user to have the ability to minimize the schedules based not only on tanker

flight distances but also by the total number of tankers required to support the operations.

This might be desirable if you have severe tanker resource constraints.

A more robust scheduling routine would aid greatly in the performance of this

tool. The least slack method is quite fast and easy to implement, however it does not

necessarily get very good results. This is especially true when there are either limited

tanker resources or when there are tight schedules between the inputted ready to load

dates and required delivery dates. The other problem with the scheduling function is that

it is not integrated within the ant colony metaheuristic. Therefore the number of tankers

that the heuristic may use in finding the shortest tanker distance, may in fact be far

greater than the number available. It is entirely possible that the ant colony may never

50 50

actually produce a feasible schedule that delivers all resources to their destination bases

in time.

Finally, this model does not take into account tanker flight crew schedules. The

number of flight crews would have a tremendous impact on tanker flight operations. In

the model tanker routes may be scheduled which would not be possible if you consider

tanker flight crew restrictions, such as maximum flight hours per day, maximum flight

hours per month, or crew rest constraints. Scheduling flight crews is itself a very difficult

process, however it may be possible to add some rules which would at least somewhat

capture the idea of crew restrictions. Current AFIT research is being performed on the

tanker crew scheduling problem. In the future, it may be possible to combine this model

with that crew scheduling model to form a complete tanker scheduling tool.

51 51

Appendix A. TAP Tool VBA Coding

'Module: Plan
'Author: Capt RonJon Annaballi, USAF AFIT/ENS
'Last Updated:
'Function: This module contains the primary code for the Quick Look Tanker Deployment
' Tool. 'Sub Plan()' is run when the "Develop Master Plan" button located on the
' Menu sheet is pushed

Public RParray(), RPdist(), PT(), Hold(), TnkSpeed(), TnkTime(), TnkParams() As Variant
Public RefuelPoints(), pheromone(), RPList(), TankerFuel(), AntTravel, RefuelInfo() As Variant
Public numAnts, RPnum, RPvisited, numTankerBases, numTankertypes, alpha, beta, numreceivergroups As Integer
Public antroutes(), bestroute(), tnkroutes(), besttnkroutes(), RPtime(), RGtiming(), route As Variant
Public MissionPlan(), Fuelrqmts(), tankBases(), routeRG(), RGarray, tnkAssign(), RouteInfo() As Variant
Public tankersched(), tnkstart(), tnkfinish(), NewAntRoute(), newtnkroute(), tnkcount() As Variant
Public numtanker As Variant

Sub Plan()

' Initialize some variables.

gettime = Time 'gettime stores current time (used to calculate running time of program)
rpcount = 0 'RPcount stores the number of refueling points needed for scenario
numAnts = 0
numIterations = 1
alpha = 1 'sets alpha rate for ACO heuristic
beta = 5 'sets beta rate for ACO heuristic
evaporation = 0.5 'sets evaporation rate for ACO heuristic

'SECTION I. INPUT DATA

'i. Assign user input from INPUT worksheet to data array 'ReceiverDdata'
' This assignment does not put limits on the number of mission plans that can be entered.
' For data processing the number of mission plans entered by the user
' is counted and assigned to variable 'NumReceiverGroups'

Set tempfile = Sheets("INPUT").Range("A6").CurrentRegion
Receiverdata = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
numreceivergroups = tempfile.Rows.Count - 1

'ii. Assign user input wind data from WINDS worksheet to data array 'winds'

'Set tempfile = Sheets("WINDS").Range("A7").CurrentRegion
'winds = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)

'iii. Assign ICAO data list in the AIRBASES worksheet to data array 'GlobalBaseList'. The number
' of bases currently listed is counted and assigned to the variable 'NumGlobalBases'

Set tempfile = Sheets("AIRBASES").Range("A3").CurrentRegion
globalbaselist = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
NumGlobalBases = tempfile.Rows.Count - 1

'iv. Assign RECEIVER DATA information to data array 'receivers' The number
' of aircraft currently listed is counted and assigned to the variable 'numreceivertypes'

Set tempfile = Sheets("RECEIVER DATA").Range("A8").CurrentRegion
receivers = tempfile.Offset(2, 0).Resize(tempfile.Rows.Count - 2, tempfile.Columns.Count)
Numreceivertypes = tempfile.Rows.Count - 2

'v. Assign TANKER DATA information to data array 'tankers' The number of
' aircraft currently listed is counted and assigned to the variable 'numtankertypes'

52 52

Set tempfile = Sheets("TANKER DATA").Range("A4").CurrentRegion
tankers = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
numTankertypes = tempfile.Rows.Count - 1

ReDim TnkSpeed(1 To numTankertypes)

For i = 1 To numTankertypes
 TnkSpeed(i) = tankers(i, 3)
Next i

'vi. Assign tanker base input from TankerBases worksheet to data array 'TankerBases. The number
' of bases currently listed is counted and assigned to the variable 'NumTankerBases'

Set tempfile = Sheets("TankerBases").Range("A3").CurrentRegion
tankerBases = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
numTankerBases = tempfile.Rows.Count - 1

' Finds the index (row number) for each tanker base and assigns to RowIndex. Then assigns
' appropriate number of tankers to respective base in GlobalBaseList. Finally an
' array is built for the tanker bases being used

ReDim TnkParams(1 To numTankerBases, 4)
ReDim tankBases(1 To numTankerBases, 6)
For n = 1 To numTankerBases
 tnkindex = Find(tankerBases(n, 3), tankers, numTankertypes)
 RowIndex = Find(tankerBases(n, 1), globalbaselist, NumGlobalBases)
 globalbaselist(RowIndex, 6) = tankerBases(n, 2)

 tankBases(n, 1) = globalbaselist(RowIndex, 1) ' Base ID
 tankBases(n, 2) = globalbaselist(RowIndex, 2) ' Base Name
 tankBases(n, 3) = globalbaselist(RowIndex, 4) ' Base Latitude
 tankBases(n, 4) = globalbaselist(RowIndex, 5) ' Base Longitude
 tankBases(n, 5) = globalbaselist(RowIndex, 6) ' # of tankers at Base
 tankBases(n, 6) = tankerBases(n, 3) ' type of tankers at Base

 TnkParams(n, 1) = tankers(tnkindex, 4) / tankers(tnkindex, 3) 'fuel flow conversion factor (=fuel flow/air speed)
 TnkParams(n, 2) = tankers(tnkindex, 7) 'climb fuel
 TnkParams(n, 3) = tankers(tnkindex, 5) - tankers(tnkindex, 6) 'maximum fuel
 TnkParams(n, 4) = tankers(tnkindex, 3) 'air speed

Next n

'vii. Checks Input Data

For i = 1 To numreceivergroups

 RowIndex = Find(Receiverdata(i, 2), receivers, Numreceivertypes)

 ' This section corrects the input data. It compares the number of assets in the receiver group
 ' against the defined receiver group size in RECEIVER DATA worksheet. If the input
 ' inputted size is larger, this section breaks up the receiver group into a number of smaller groups

 n = 1
 While Sheets("INPUT").Cells(i + 6, 3) > receivers(RowIndex, 2)

 Sheets("Input").Select
 Range(Cells(i + 6, 1), Cells(i + 6, 18)).Copy
 Sheets("INPUT").Paste Destination:=Sheets("INPUT").Range(Cells(numreceivergroups + 7, 1), Cells(numreceivergroups + 7,
18))
 Sheets("INPUT").Cells(i + 6, 3) = Sheets("INPUT").Cells(i + 6, 3) - receivers(RowIndex, 2)
 Sheets("INPUT").Cells(numreceivergroups + 7, 3) = receivers(RowIndex, 2)
 Sheets("INPUT").Cells(numreceivergroups + 7, 1) = Sheets("INPUT").Cells(numreceivergroups + 7, 1) & n
 n = n + 1
 numreceivergroups = numreceivergroups + 1
 Wend

Next i

53 53

' Reads in updated Input File

Set tempfile = Sheets("INPUT").Range("A6").CurrentRegion
Receiverdata = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)

'SECTION II. MISSION PLAN WORKSHEET

ReDim MissionPlan(1 To numreceivergroups, 15)
ReDim Fuelrqmts(1 To numreceivergroups, 10)
ReDim RefuelInfo(1 To numreceivergroups, 0 To 100)
ReDim RGtiming(1 To numreceivergroups, 4)
For i = 1 To numreceivergroups

 WayPointDist = 0 'Clears out past values
 firstrpdist = 0

 RGtiming(i, 1) = 24 * (Receiverdata(i, 12) - 1) 'converts ALD to hours
 RGtiming(i, 2) = 24 * (Receiverdata(i, 13) - 1) 'converts RDD to hours

'i. Transfer the Sortie ID from user input to mission plan data array 'MissionPlan'

 MissionPlan(i, 1) = Receiverdata(i, 1)

'ii. Identify the latitude and longitude of user input origin and destination airbases
' and assign to mission plan data array 'MissionPlan'

 RowIndex = Find(Receiverdata(i, 4), globalbaselist, NumGlobalBases) 'Origin Coordinates

 MissionPlan(i, 2) = globalbaselist(RowIndex, 4)
 MissionPlan(i, 3) = globalbaselist(RowIndex, 5)

 RowIndex = Find(Receiverdata(i, 5), globalbaselist, NumGlobalBases) 'Destination Coordinates

 MissionPlan(i, 4) = globalbaselist(RowIndex, 4)
 MissionPlan(i, 5) = globalbaselist(RowIndex, 5)

 If Receiverdata(i, 14) <> 0 Then 'Waypoint Coordinates (if any)
 MissionPlan(i, 14) = Receiverdata(i, 14)
 MissionPlan(i, 15) = Receiverdata(i, 15)
 End If

'iii. Compute the flight window (in days. Subtracts "ready for departure date" from "required deliver date"
 MissionPlan(i, 6) = Receiverdata(i, 13) - Receiverdata(i, 12)

'iv. Calculate the flight distance for the receiver groups

 If Receiverdata(i, 6) > 0 Then 'use for Receiver Groups that fly to an orbit point
 MissionPlan(i, 7) = Receiverdata(i, 6)

 ElseIf Receiverdata(i, 14) = "" Then 'use for Receiver Groups that fly directly to destination base
 MissionPlan(i, 7) = GreatCircleDistance(MissionPlan(i, 2), MissionPlan(i, 3), MissionPlan(i, 4), MissionPlan(i, 5))

 Else 'Use for Receiver Groups that fly to a waypoint along their path. Calculates distance from origin
 'to waypoint. Then does another calculation from waypoint to destination base and adds the two figures.

 WayPointDist = GreatCircleDistance(MissionPlan(i, 2), MissionPlan(i, 3), MissionPlan(i, 14), MissionPlan(i, 15))
 MissionPlan(i, 7) = WayPointDist + GreatCircleDistance(MissionPlan(i, 14), MissionPlan(i, 15), MissionPlan(i, 4),
MissionPlan(i, 5))

 End If

'v. Referencing the RECEIVER DATA worksheet, the escort requirement and number of
' receivers per tanker values are determined and assigned to the MissionPlan data array

 RowIndex = Find(Receiverdata(i, 2), receivers, Numreceivertypes)
 MissionPlan(i, 8) = receivers(RowIndex, 9) 'Escort Requirement

54 54

 MissionPlan(i, 9) = receivers(RowIndex, 2) 'Receiver Group max size

'vi. Using the latitudes and longitudes of the origin and destination bases, the mean true
' course of the receiver is calculated. The mean true course, air speed, wind direction,
' and wind velocity are then used to calculate the receiver ground speed.
' Note: Currently wind is not accounted for in the model, therefore this is not performed.

 ' TC = TrueCourse(MissionPlan(i, 7), MissionPlan(i, 2), MissionPlan(i, 3), MissionPlan(i, 4), MissionPlan(i, 5))
 ' grdspd = GroundSpeed(rdata(i, 7), TC, winds(i, 1), winds(i, 2))

 'Calculate maximum receiver flight duration (= great circle distance / ground speed).
 MissionPlan(i, 10) = MissionPlan(i, 7) / Receiverdata(i, 7) 'Max Duration Time
 MissionPlan(i, 11) = Receiverdata(i, 7) 'True ground speed (= True Air speed if no wind)

 'SECTION III. OFFLOAD CALCULATIONS

 'Fuelrqmts contains information to calculate fuel waypoints

 Fuelrqmts(i, 1) = Receiverdata(i, 1) ' Sortie ID
 Fuelrqmts(i, 2) = Receiverdata(i, 11) ' Total Fuel Capacity
 Fuelrqmts(i, 3) = Receiverdata(i, 7) ' True air speed
 Fuelrqmts(i, 4) = MissionPlan(i, 11) ' Ground Speed
 Fuelrqmts(i, 5) = receivers(RowIndex, 7) ' Climb Fuel
 Fuelrqmts(i, 6) = receivers(RowIndex, 4) ' Fuel Flow
 Fuelrqmts(i, 7) = receivers(RowIndex, 6) ' Fuel Reserve

 FuelFlow1 = receivers(RowIndex, 12) 'Reads in fuel flow coefficients from RECEIVER DATA
 FuelFlow2 = receivers(RowIndex, 13) 'Used to find the fuel burn rate
 FuelFlow3 = receivers(RowIndex, 14)
 FuelFlow4 = receivers(RowIndex, 15)

 'Calculates refueling requirement. Uses a third order polynomial function to calulate total fuel needed
 'Subtracts out the amount of starting fuel able to be used. If the final number is negative then no
 'refueling is needed. Fuelneeded is the amount of refueling needed for the receiver group.

 totalfuelneeded = recflburn(MissionPlan(i, 7), Fuelrqmts(i, 4), Fuelrqmts(i, 2), Fuelrqmts(i, 7), Receiverdata(i, 9), Receiverdata(i,
10), Fuelrqmts(i, 5), FuelFlow1, FuelFlow2, FuelFlow3, FuelFlow4)
 fuelneeded = Receiverdata(i, 3) * (totalfuelneeded - Fuelrqmts(i, 2) + Fuelrqmts(i, 7))
 If fuelneeded < 0 Then
 Fuelrqmts(i, 8) = 0
 Else
 Fuelrqmts(i, 8) = fuelneeded
 End If

 Fuelrqmts(i, 9) = totalfuelneeded 'Total Fuel Needed to Complete Trip

 ' Calculates maximum distance between refueling legs.
 ' Formula: (Fuel Capacity - Fuel Reserve)*Ground Speed/Fuel Flow

 Fuelrqmts(i, 10) = (Fuelrqmts(i, 2) - Fuelrqmts(i, 7)) * Fuelrqmts(i, 4) / Fuelrqmts(i, 6)

'SECTION IV. Calculations for the refueling points.

 RefuelInfo(i, 0) = MissionPlan(i, 8) ' Sortie ID
 RefuelInfo(i, 1) = Receiverdata(i, 1) ' Sortie ID
 RefuelInfo(i, 2) = MissionPlan(i, 2) ' Origin Latitude
 RefuelInfo(i, 3) = MissionPlan(i, 3) ' Origin Longitude
 RefuelInfo(i, 4) = MissionPlan(i, 4) ' Destination Latitude
 RefuelInfo(i, 5) = MissionPlan(i, 5) ' Destination Longitude
 RefuelInfo(i, 6) = Fuelrqmts(i, 10) ' Distance between RPs

 ' Calculates amount of fuel needed. This assumes aircraft travel 100 miles while climbing.
 ' Fuelreq = climb fuel + amount of fuel needed to travel the total distance (minus 100 miles))

 fuelreq = Fuelrqmts(i, 5) + (MissionPlan(i, 7) - 100) * Fuelrqmts(i, 6) / Fuelrqmts(i, 4)

55 55

 ' Checks to see if refueling is needed. {yes if: fuelrequired > (fuel capacity - fuel reserve)}
 ' If so then determine first refueling point and the total amount of fuel needed at that point.

 If fuelreq <= Fuelrqmts(i, 2) - Fuelrqmts(i, 7) Then GoTo NoRefuel 'If no refueling needed skip to next receiver group

 If RefuelInfo(i, 6) > MissionPlan(i, 7) Then 'If max leg is greater than total flight distance

 firstrpdist = 100 'Set refueling point to TopOff Point (100 miles)
 RefuelInfo(i, 8) = Receiverdata(i, 3) * Fuelrqmts(i, 5) 'Refueling = # receivers * climb fuel

 ElseIf Receiverdata(i, 16) > 0 Then ' if input sheet has 1st refueling point overide

 firstrpdist = Receiverdata(i, 16) ' set 1st refueling point to user input.
 ' Fuel = # receivers *(climb fuel + (distance to refuel point - climb distance)*fuel flow/speed))
 RefuelInfo(i, 8) = Receiverdata(i, 3) * (Fuelrqmts(i, 5) + (Receiverdata(i, 16) - 100) * Fuelrqmts(i, 6) / Fuelrqmts(i, 4))

 Else '1st ref dist = dist between RPs-(climb fuel*ground speed/fuel flow)
 firstrpdist = RefuelInfo(i, 6) - (Fuelrqmts(i, 5) * Fuelrqmts(i, 4) / Fuelrqmts(i, 6))
 ' Fuel = # receivers *(fuel capacity - fuel reserve)
 RefuelInfo(i, 8) = Receiverdata(i, 3) * (Fuelrqmts(i, 2) - Fuelrqmts(i, 7))

 End If
 rpcount = rpcount + 1

 ' Calculates the number of additional legs needed
 RefuelInfo(i, 7) = Ceiling((MissionPlan(i, 7) - firstrpdist) / RefuelInfo(i, 6) - 1)

 ' If only 1 refueling point is needed, then correct offload amount to equal fuel needed to get to final base
 ' fuel = # receivers *(total distance - distance to 1st RP)* fuel flow/speed
 If RefuelInfo(i, 7) = 0 Then

 RefuelInfo(i, 8) = Receiverdata(i, 3) * (MissionPlan(i, 7) - firstrpdist) * Fuelrqmts(i, 6) / Fuelrqmts(i, 4)

 End If

' Calculates the coordinates and azimuth to first refueling point.

 If firstrpdist > 0 Then ' If the distance to first RP is greater than 0.

 If WayPointDist = 0 Then ' For no defined waypoints

 azym = getAz(RefuelInfo(i, 2), RefuelInfo(i, 3), RefuelInfo(i, 4), RefuelInfo(i, 5))
 RefuelInfo(i, 9) = getLat(RefuelInfo(i, 2), firstrpdist, azym)
 RefuelInfo(i, 10) = getLong(RefuelInfo(i, 3), firstrpdist, azym, RefuelInfo(i, 9))

 ElseIf firstrpdist < WayPointDist Then 'If waypoint is after first refuel point

 azym = getAz(RefuelInfo(i, 2), RefuelInfo(i, 3), Receiverdata(i, 14), Receiverdata(i, 15))
 RefuelInfo(i, 9) = getLat(RefuelInfo(i, 2), firstrpdist, azym)
 RefuelInfo(i, 10) = getLong(RefuelInfo(i, 3), firstrpdist, azym, RefuelInfo(i, 9))

 Else ' If 1st RP is after the waypoint

 azym = getAz(Receiverdata(i, 14), Receiverdata(i, 15), RefuelInfo(i, 4), RefuelInfo(i, 5))
 dist = firstrpdist - WayPointDist
 RefuelInfo(i, 9) = getLat(Receiverdata(i, 14), dist, azym)
 RefuelInfo(i, 10) = getLong(Receiverdata(i, 15), dist, azym, RefuelInfo(i, 9))

 End If
 End If

 'Determine the minimum number of tankers that can service this refuel point

 tankersneeded = 100 'Initialize number of tankers needed to be very large
 For t = 1 To numTankerBases
 ' Calculates distance between RP and tankerbase, finds the tanker type, and then calculates the roundtrip fuel
 ' needed to reach refueling point and then return to base (Stores the fuel needed as FuelTravel)

56 56

 dist = GreatCircleDistance(RefuelInfo(i, 9), RefuelInfo(i, 10), tankBases(t, 3), tankBases(t, 4))
 RowIndex = Find(tankBases(t, 6), tankers, numTankertypes)
 FuelTravel = tankers(RowIndex, 7) + (2 * dist - 100) * tankers(RowIndex, 4) / tankers(RowIndex, 3)
 'Calculate the offload available at the RP
 maxtankeroffload = tankers(RowIndex, 5) - tankers(RowIndex, 6) - FuelTravel
 'If tanker can refuel, calculate the number needed to meet this RP requirement
 If maxtankeroffload > 0 Then
 required = Ceiling(RefuelInfo(i, 8) / maxtankeroffload)
 If required < tankersneeded Then tankersneeded = required
 End If

 Next t

 'Breaks up large refueling points into smaller pieces based on the minimum number of tankers that can reach
 'that refueling point and return to its tanker base

 If tankersneeded > 1 Then
 offload = RefuelInfo(i, 8) / tankersneeded
 RefuelInfo(i, 8) = offload
 For k = 1 To (tankersneeded - 1) 'Since we already have first part of RP stored, only need to add the remaining sections
 RefuelInfo(i, 8 + 3 * k) = offload
 RefuelInfo(i, 9 + 3 * k) = RefuelInfo(i, 9)
 RefuelInfo(i, 10 + 3 * k) = RefuelInfo(i, 10)
 rpcount = rpcount + 1 'Increments RP counter
 Next k
 ArrayOffset = tankersneeded - 1
 'if refueling point offload is greater than 70 then split in half even if one tanker can reach it
 ElseIf RefuelInfo(i, 8) > 70 Then
 RefuelInfo(i, 8) = RefuelInfo(i, 8) / 2
 RefuelInfo(i, 8 + 3) = RefuelInfo(i, 8)
 RefuelInfo(i, 9 + 3) = RefuelInfo(i, 9)
 RefuelInfo(i, 10 + 3) = RefuelInfo(i, 10)
 rpcount = rpcount + 1 'Increments RP Counter
 ArrayOffset = 1
 Else 'No adjustment of refueling point is needed
 ArrayOffset = 0
 End If

 ' Checks escort requirement. If needed construct a new RP with same coordinates as current RP but with zero offload

 If MissionPlan(i, 8) = "Y" Or MissionPlan(i, 8) = "y" Then

 ' Subroutine call to check if Refueling Point is over water would be located here

 ArrayOffset = ArrayOffset + 1
 RefuelInfo(i, 8 + 3 * ArrayOffset) = 0 'Sets offload
 RefuelInfo(i, 9 + 3 * ArrayOffset) = RefuelInfo(i, 9) 'Sets latitude
 RefuelInfo(i, 10 + 3 * ArrayOffset) = RefuelInfo(i, 10) 'Sets longitude
 rpcount = rpcount + 1 'Increments RP Counter
 End If

 ' Calculate Remaining Refueling points

 For j = 1 To RefuelInfo(i, 7)
 AO = ArrayOffset + 1
 ' find the coordinates for the next RP
 If WayPointDist = 0 Then 'For no defined waypoint
 azym = getAz(RefuelInfo(i, 9 + 3 * (AO - 1)), RefuelInfo(i, 10 + 3 * (AO - 1)), RefuelInfo(i, 4), RefuelInfo(i, 5))
 RefuelInfo(i, 9 + 3 * AO) = getLat(RefuelInfo(i, 9 + 3 * (AO - 1)), RefuelInfo(i, 6), azym)
 RefuelInfo(i, 10 + 3 * AO) = getLong(RefuelInfo(i, 10 + 3 * (AO - 1)), RefuelInfo(i, 6), azym, RefuelInfo(i, 9 + 3 * AO))

 ElseIf firstrpdist + j * RefuelInfo(i, 6) < WayPointDist Then 'If waypoint is after this refuel point
 azym = getAz(RefuelInfo(i, 9 + 3 * (AO - 1)), RefuelInfo(i, 10 + 3 * (AO - 1)), Receiverdata(i, 14), Receiverdata(i, 15))
 RefuelInfo(i, 9 + 3 * AO) = getLat(RefuelInfo(i, 9 + 3 * (AO - 1)), RefuelInfo(i, 6), azym)
 RefuelInfo(i, 10 + 3 * AO) = getLong(RefuelInfo(i, 10 + 3 * (AO - 1)), RefuelInfo(i, 6), azym, RefuelInfo(i, 9 + 3 * AO))

57 57

 Else ' If RP is after the waypoint
 azym = getAz(Receiverdata(i, 14), Receiverdata(i, 15), RefuelInfo(i, 4), RefuelInfo(i, 5))
 dist = (firstrpdist + j * RefuelInfo(i, 6)) - WayPointDist
 RefuelInfo(i, 9 + 3 * AO) = getLat(Receiverdata(i, 14), dist, azym)
 RefuelInfo(i, 10 + 3 * AO) = getLong(Receiverdata(i, 15), dist, azym, RefuelInfo(i, 9 + 3 * AO))

 End If
 If j < RefuelInfo(i, 7) Then 'If not the last refuel point; fuel needed = # receivers *(fuel capacity - fuel reserve)
 RefuelInfo(i, 8 + 3 * AO) = Receiverdata(i, 3) * (Fuelrqmts(i, 2) - Fuelrqmts(i, 7))

 Else ' for last refuel point, only need enough fuel to get to final base
 ' fuel = # receivers *(total distance - (distance to 1st RP + distance to final RP))* fuel flow/speed

 RefuelInfo(i, 8 + 3 * AO) = Receiverdata(i, 3) * (MissionPlan(i, 7) - (firstrpdist + j * RefuelInfo(i, 6))) * Fuelrqmts(i, 6) /
Fuelrqmts(i, 4)

 End If

 rpcount = rpcount + 1 'Increments the counter for number of refueling points needed

 'Determine the minimum number of tankers that can service this refuel point

 tankersneeded = 100 'Initialize number of tankers needed to be very large
 For t = 1 To numTankerBases
 ' Calculates distance between RP and tankerbase, finds the tanker type, and then calculates the roundtrip fuel
 ' needed to reach refueling point and then return to base (Stores the fuel needed as FuelTravel)
 dist = GreatCircleDistance(RefuelInfo(i, 9 + 3 * AO), RefuelInfo(i, 10 + 3 * AO), tankBases(t, 3), tankBases(t, 4))
 RowIndex = Find(tankBases(t, 6), tankers, numTankertypes)
 FuelTravel = tankers(RowIndex, 7) + (2 * dist - 100) * tankers(RowIndex, 4) / tankers(RowIndex, 3)
 'Calculate the offload available at the RP
 maxtankeroffload = tankers(RowIndex, 5) - tankers(RowIndex, 6) - FuelTravel
 'If tanker can refuel, calculate the number needed to meet this RP requirement
 If maxtankeroffload > 0 Then
 required = Ceiling(RefuelInfo(i, 8 + 3 * AO) / maxtankeroffload)
 If required < tankersneeded Then tankersneeded = required
 End If

 Next t

 'Breaks up large refueling points into smaller pieces based on the minimum number of tankers that can reach
 'that refueling point and return to its tanker base

 If tankersneeded > 1 Then
 offload = RefuelInfo(i, 8 + 3 * AO) / tankersneeded
 RefuelInfo(i, 8 + 3 * AO) = offload
 For k = 1 To (tankersneeded - 1)
 RefuelInfo(i, 8 + 3 * (AO + k)) = offload
 RefuelInfo(i, 9 + 3 * (AO + k)) = RefuelInfo(i, 9 + 3 * AO)
 RefuelInfo(i, 10 + 3 * (AO + k)) = RefuelInfo(i, 10 + 3 * AO)
 rpcount = rpcount + 1 'Increments RP counter
 Next k
 ArrayOffset = AO + tankersneeded - 1
 'if refueling point offload is greater than 70 then split in half even if one tanker can reach it
 ElseIf RefuelInfo(i, 8 + 3 * AO) > 70 Then
 RefuelInfo(i, 8 + 3 * AO) = RefuelInfo(i, 8 + 3 * AO) / 2
 RefuelInfo(i, 8 + 3 * (AO + 1)) = RefuelInfo(i, 8 + 3 * AO)
 RefuelInfo(i, 9 + 3 * (AO + 1)) = RefuelInfo(i, 9 + 3 * AO)
 RefuelInfo(i, 10 + 3 * (AO + 1)) = RefuelInfo(i, 10 + 3 * AO)
 rpcount = rpcount + 1 'Increments RP Counter
 ArrayOffset = AO + 1
 Else 'No adjustment of refueling point is needed
 ArrayOffset = AO
 End If

 ' Checks escort requirement. If needed construct a new RP with same coordinates as current RP but with zero offload

 If MissionPlan(i, 8) = "Y" Or MissionPlan(i, 8) = "y" Then

58 58

 ' Subroutine call to check if Refueling Point is over water would be located here

 ArrayOffset = ArrayOffset + 1
 RefuelInfo(i, 8 + 3 * ArrayOffset) = 0 'Sets offload
 RefuelInfo(i, 9 + 3 * ArrayOffset) = RefuelInfo(i, 9 + 3 * AO) 'Sets latitude
 RefuelInfo(i, 10 + 3 * ArrayOffset) = RefuelInfo(i, 10 + 3 * AO) 'Sets longitude
 rpcount = rpcount + 1 'Increments RP Counter
 End If

 Next j
NoRefuel: 'If no refueling is needed for a receiver group, skip to here

Next i

'--

' Creates array which stores Refueling Point lat/long and offload required

ReDim RefuelPoints(1 To rpcount, 12)

k = 0
For i = 1 To numreceivergroups
 j = 0
 While RefuelInfo(i, 8 + 3 * j) <> ""
 k = k + 1
 If RefuelInfo(i, 0) = "y" Or RefuelInfo(i, 0) = "Y" Then
 RefuelPoints(k, 9) = 1
 Else
 RefuelPoints(k, 9) = 0
 End If 'escort requirement
 RefuelPoints(k, 1) = RefuelInfo(i, 1) 'Receiver Group Name
 RefuelPoints(k, 2) = RefuelInfo(i, 9 + 3 * j) 'latitude of RP
 RefuelPoints(k, 3) = RefuelInfo(i, 10 + 3 * j) 'longitude of RP
 RefuelPoints(k, 4) = RefuelInfo(i, 8 + 3 * j) 'offload at RP
 j = j + 1

 'determines the time windows for the RPs.
 ' RefuelPoints(k, 5) represents the earliest possible start (arrival at refueling point)
 ' RefuelPoints(k, 5) represents the latest possible start (arrival at refueling point)

 dist = GreatCircleDistance(MissionPlan(i, 2), MissionPlan(i, 3), RefuelPoints(k, 2), RefuelPoints(k, 3))

 RefuelPoints(k, 5) = (Receiverdata(i, 12) - 1) * 24 + (dist / MissionPlan(i, 11))
 RefuelPoints(k, 6) = (Receiverdata(i, 13) - 1) * 24 - ((MissionPlan(i, 7) - dist) / MissionPlan(i, 11))
 Wend
Next i

'Defines the RP: Receiver Group name and the actual RP number for that Receiver Group
i = 1
RefuelPoints(1, 7) = RefuelPoints(1, 1) & i
RefuelPoints(1, 10) = 1
RGnum = 1
RefuelPoints(1, 11) = RGnum

For k = 2 To rpcount
 If RefuelPoints(k, 2) = RefuelPoints(k - 1, 2) And RefuelPoints(k, 3) = RefuelPoints(k - 1, 3) And RefuelPoints(k, 1) =
RefuelPoints(k - 1, 1) Then
 RefuelPoints(k, 7) = RefuelPoints(k, 1) & i
 RefuelPoints(k, 10) = i
 Else
 i = i + 1
 RefuelPoints(k, 7) = RefuelPoints(k, 1) & i
 RefuelPoints(k, 10) = i
 End If
 If RefuelPoints(k, 1) <> RefuelPoints(k - 1, 1) Then
 i = 1
 RGnum = RGnum + 1

59 59

 RefuelPoints(k, 7) = RefuelPoints(k, 1) & i
 RefuelPoints(k, 10) = i
 End If
 RefuelPoints(k, 11) = RGnum
Next k

' Finds the escort RP associated with each offload RP
For k = rpcount To 2 Step -1
 If RefuelPoints(k, 4) = 0 Then
 escort = k
 RefuelPoints(k, 8) = escort
 End If
 If RefuelPoints(k, 7) = RefuelPoints(k - 1, 7) And (RefuelPoints(k - 1, 9) = 1 Or RefuelPoints(k - 1, 9) = 1) Then
 RefuelPoints(k - 1, 8) = escort
 End If
Next k

' Creates arrays which store the distances between refueling points and between tankerbases and refueling points
' Then creates array "TankerFuel" which stores the amount of fuel needed to get from tankerbase to refuel point

ReDim RPdist(1 To rpcount, 1 To rpcount + numTankerBases)
ReDim TankerFuel(1 To numTankerBases, 1 To rpcount)

For i = 1 To rpcount

 For j = i + 1 To rpcount
 RPdist(i, j) = GreatCircleDistance(RefuelPoints(i, 2), RefuelPoints(i, 3), RefuelPoints(j, 2), RefuelPoints(j, 3))
 RPdist(j, i) = RPdist(i, j)
 Next j

 For k = 1 To numTankerBases 'Finds roundtrip fuel required from tankerbase k to refuel point i

 RPdist(i, rpcount + k) = GreatCircleDistance(RefuelPoints(i, 2), RefuelPoints(i, 3), tankBases(k, 3), tankBases(k, 4))
 tnkrrndtrpdist = 2 * RPdist(i, rpcount + k)
 RowIndex = Find(tankBases(k, 6), tankers, numTankertypes) 'Determines the type of tanker available
 TankerFuel(k, i) = tankers(RowIndex, 7) + (tnkrrndtrpdist - 100) * tankers(RowIndex, 4) / tankers(RowIndex, 3)

 Next k

Next i
'--
'For each tanker base, apply the following ACO Heuristic
ReDim pheromone(1 To rpcount, 1 To rpcount + numTankerBases)
ReDim RParray(1 To rpcount)

For i = 1 To numTankerBases

 RowIndex = Find(tankBases(i, 6), tankers, numTankertypes) 'Determines the tanker type at base
 For k = 1 To rpcount
 'Checks to see if tanker can make roundtrip journey and meet offload requirement
 'Roundtrip fuel < max capacity - fuel reserve - required offload
 If TankerFuel(i, k) <= (tankers(RowIndex, 5) - tankers(RowIndex, 6) - RefuelPoints(k, 4)) Then

 pheromone(k, rpcount + i) = 10000 / (2 * RPdist(k, rpcount + i)) 'sets initial pheromone trail to roundtrip distance

 End If

 Next k
Next i

For x = 1 To numIterations

 ReDim Hold(1 To rpcount, 1 To rpcount + numTankerBases) 'Clears out holding container

 For i = 1 To numTankerBases 'Determine which RPs are in range of tanker base and store in RParray

60 60

 RowIndex = Find(tankBases(i, 6), tankers, numTankertypes) 'Determines the tanker type at base
 RPnum = 0
 For k = 1 To rpcount
 'Checks to see if tanker can make roundtrip journey and meet offload requirement
 'Roundtrip fuel < max capacity - fuel reserve - required offload
 If TankerFuel(i, k) <= (tankers(RowIndex, 5) - tankers(RowIndex, 6) - RefuelPoints(k, 4)) Then

 RPnum = RPnum + 1
 RParray(k) = 1 'Specifies that the refueling point is within range

 Else
 RParray(k) = 0 'Specifies that the refueling point is out of range

 End If

 Next k

 'Builds ant routes (one at a time) starting with each RP in range of tanker

 For k = 1 To rpcount

 ReDim PT(1 To rpcount, 1 To rpcount + numTankerBases) 'Clears out PT array

 RPList = RParray
 If RParray(k) = 1 Then

 'Calculate fuel needed to get from tanker base to RP
 fuelused = tankers(RowIndex, 7) + (RPdist(k, rpcount + i) - 100) * TnkParams(i, 1) + RefuelPoints(k, 4)
 Call AntColony(i, k, fuelused, rpcount, 0) 'transfers control to the AntColony subroutine with current tankerbase and current
RP to start with

 'adjust AntTravel base on number of RPs visited
 AntTravel = (AntTravel + 1000 * (rpcount - RPvisited)) / 100000

 For n = 1 To rpcount 'updates pheromone trail for current colony
 For m = 1 To rpcount + numTankerBases
 Hold(n, m) = Hold(n, m) + PT(n, m) / AntTravel
 Next m
 Next n

 End If
 Next k

 Next i

 'update pheromone trail based on last iteration
 For n = 1 To rpcount 'updates pheromone trail for current colony
 For m = 1 To rpcount + numTankerBases
 pheromone(n, m) = evaporation * pheromone(n, m) + Hold(n, m)
 Next m
 Next n

Next x

'---
'Calculates time to travel from each tankerbase to each refuel point
'Stores the time in TnkTime()

ReDim TnkTime(1 To numTankerBases, 1 To rpcount)

For i = 1 To numTankerBases
 RowIndex = Find(tankBases(i, 6), tankers, numTankertypes)
 For j = 1 To rpcount
 TnkTime(i, j) = RPdist(j, rpcount + i) / TnkSpeed(RowIndex)
 Next j
Next i

'--

61 61

'This section is used to generate routes based on all tanker bases

ReDim bestroute(1 To rpcount, 1 To rpcount) As Variant
ReDim besttnkroute(1 To rpcount) As Variant
ReDim besttnksched(4, 1 To rpcount) As Variant
ReDim RPtime(1 To rpcount) As Variant

bestSol = 1E+25 'initializes starting solution values
bestRP = -1
RPnum = rpcount 'makes all bases within range

For k = 1 To rpcount

 RParray(k) = 1 'Initializes the RParray to indicate all bases are within range
Next k

For x = 1 To numIterations

 ReDim Hold(1 To rpcount, 1 To rpcount + numTankerBases) 'Clears out holding container

 For k = 1 To rpcount

 ReDim PT(1 To rpcount, 1 To rpcount + numTankerBases) 'Clears out PT array

 RPList = RParray

 i = tankerFind(k, rpcount) 'Determines which tanker to use to service Refuel Point k
 fuelused = TnkParams(i, 2) + (RPdist(k, rpcount + i) - 100) * TnkParams(i, 1) + RefuelPoints(k, 4)

 'Call ACO heuristic to generate route
 Call AntColony(i, k, fuelused, rpcount, 1)

 'Calls scheduling algorithm

 Call schedule(rpcount)

 '--
 'Evaluates route and schedule

 If AntTravel < bestSol And RPvisited >= bestRP And k = 1 Then
 bestRP = RPvisited
 bestSol = AntTravel
 bestroutes = route
 RPbest = k
 bestnumtankers = numtanker

 For n = 1 To rpcount
 For m = 1 To rpcount
 bestroute(n, m) = antroutes(n, m)
 Next m
 besttnkroute(n) = newtnkroute(n)
 RefuelPoints(n, 12) = RPtime(n)

 besttnksched(1, n) = tankersched(1, n)
 besttnksched(2, n) = tankersched(2, n)
 besttnksched(3, n) = tankersched(3, n)
 besttnksched(4, n) = tankersched(4, n)
 Next n
 End If

 '--

 'adjust AntTravel base on number of RPs visited
 AntTravel = (AntTravel + 1000 * (rpcount - RPvisited)) / 100000

 For n = 1 To rpcount 'updates pheromone trail for current colony
 For m = 1 To rpcount + numTankerBases
 Hold(n, m) = Hold(n, m) + PT(n, m) / AntTravel

62 62

 Next m
 Next n

 Next k

 'update pheromone trail based on last iteration
 For n = 1 To rpcount 'updates pheromone trail for current colony
 For m = 1 To rpcount + numTankerBases
 pheromone(n, m) = evaporation * pheromone(n, m) + Hold(n, m)
 Next m
 Next n

Next x

'---
'Outputs pertinent information to the worksheets

'Outputs information about the Refueling Points
Sheets("RP locations").Select
For n = 1 To rpcount

 Cells(n + 1, 1) = RefuelPoints(n, 1) 'RG Name
 Cells(n + 1, 2) = RefuelPoints(n, 10) 'RP #
 Cells(n + 1, 3) = RefuelPoints(n, 2) 'RP Lat
 Cells(n + 1, 4) = RefuelPoints(n, 3) 'RP long
 Cells(n + 1, 5) = RefuelPoints(n, 4) 'Offload
 Cells(n + 1, 6) = RefuelPoints(n, 5) 'Refuel Time
 Cells(n + 1, 8) = RGtiming(RefuelPoints(n, 11), 4) 'final arrival time at base

Next n

'Outputs information about the Tanker Routes
Sheets("Ants").Select
For i = 1 To bestroutes
 For j = 1 To rpcount
 Cells(i + 1, j + 3) = bestroute(i, j)
 Next j
 Cells(i + 1, 2) = RouteInfo(i, 7)
 Cells(i + 1, 3) = RouteInfo(i, 8)
 Cells(i + 1, 1) = tankBases(besttnkroute(i), 2) & " / " & RouteInfo(i, 9)
 Cells(i + 1, 11) = routeRG(i, 1)

Next i

Cells(bestroutes + 3, 4) = "Tankers Used: " & bestnumtankers
Cells(bestroutes + 4, 4) = "Total Tanker Distance: " & bestSol & " miles"

Sheets("Tankers").Select
For i = 1 To route

 Cells(1, i + 1) = besttnksched(1, i)
 Cells(2, i + 1) = besttnksched(2, i)
 Cells(3, i + 1) = besttnksched(3, i)
 Cells(4, i + 1) = besttnksched(4, i)

Next i

MsgBox (bestSol)
gettime = (Time - gettime)
Sheets("Menu").Cells(22, 2) = gettime
Sheets("Menu").Cells(24, 2) = numAnts
MsgBox ("I'm Done")

End Sub
Sub AntColony(tnkbase, startRP, startFuel, totalRP, ACOcall)

'This subroutine is the ACO heuristic used to determine the optimal routing for each tankerbase.

63 63

 ReDim antroutes(1 To totalRP, 1 To totalRP)
 ReDim tnkroutes(1 To totalRP) As Variant

 route = 1
 routestep = 1
 currentRP = startRP
 numRP = RPnum
 RPvisited = 0
 prevescort = -99
 antroutes(route, routestep) = currentRP 'Adds RP to route
 AntTravel = RPdist(currentRP, totalRP + tnkbase)
 PT(currentRP, totalRP + tnkbase) = 1

 If RefuelPoints(currentRP, 4) <> 0 Then 'Takes currentRP off active list if it is not an "escort" point
 RPList(currentRP) = 0
 numRP = numRP - 1
 RPvisited = RPvisited + 1
 End If

 If RefuelPoints(startRP, 9) = 1 And RefuelPoints(startRP, 10) > 1 Then
 'if currentRP is not associated with the first RP in an escort path
 temp = startRP - 1
 While RefuelPoints(startRP, 7) = RefuelPoints(temp, 7)
 temp = temp - 1
 Wend
 prevescort = RefuelPoints(temp, 8) 'finds the previous escort refueling point
 End If

 While numRP > 0

 bestSol = -999 'Initializes starting values
 nextrp = 0

 'Calculates probabilty function values for all possible moves from current RP
 'Then determines the best feasible move from current RP based on RGs involved, sequencing within RG
 'and type of aircraft involved

 For j = 1 To totalRP
 tnkroutes(route) = tnkbase
 If RPList(j) = 1 And j <> currentRP And Not (currentRP > RefuelPoints(j, 8) And RefuelPoints(currentRP, 1) =
RefuelPoints(j, 1)) Then
 'if the new RP is not used and it doesn't come before the currentRP in same RG then continue
 fuelused = startFuel + (RPdist(currentRP, j) + RPdist(j, totalRP + tnkbase)) * TnkParams(tnkbase, 1) + RefuelPoints(j, 4)
 If fuelused < TnkParams(tnkbase, 3) Then
 'if fuel needed for the route is less than max available for tanker then continue
 probfunction = pheromone(currentRP, j) ^ alpha + (10000 / (RPdist(currentRP, j) + 1)) ^ beta
 If probfunction > bestSol Then
 'if prob function is better than any previous then continue
 NxtEscort = RefuelPoints(j, 8)
 crntescort = RefuelPoints(currentRP, 8)
 followEscort = fighterescort(currentRP, totalRP)
 If RefuelPoints(currentRP, 9) = 0 Or RefuelPoints(j, 9) = 0 Or RefuelPoints(currentRP, 1) <> RefuelPoints(j, 1) Or
RefuelPoints(currentRP, 7) = RefuelPoints(j, 7) Or followEscort = NxtEscort Then
 'if either RP involved is a heavy or if RPs belong to same coordinates or new RP is next RP in sequence
 If RefuelPoints(currentRP, 1) <> RefuelPoints(j, 1) Then 'Note: I deleted this from begining of line
(RefuelPoints(currentRP, 4) = 0 And)
 Else
 bestSol = probfunction
 nextrp = j
 End If

 End If
 End If
 End If
 End If
 Next j

64 64

 'This ensures that the escort to the starting RP is made
 If nextrp = prevescort Then
 If RPList(RefuelPoints(startRP, 8)) = 0 Then
 RPList(RefuelPoints(startRP, 8)) = 1
 numRP = numRP + 1
 prevescort = ""
 End If
 End If

 If nextrp <> 0 Then 'There is a feasible point within range of current point

 If RefuelPoints(currentRP, 9) = 0 Or RefuelPoints(nextrp, 9) = 0 Or RefuelPoints(currentRP, 1) <> RefuelPoints(nextrp, 1)
Then
 'No Escort needed for this route
 routestep = routestep + 1
 antroutes(route, routestep) = nextrp
 AntTravel = AntTravel + RPdist(currentRP, nextrp)
 PT(currentRP, nextrp) = 1
 'If ACOcall = 1 Then MsgBox ("Route: " & Route & " Step: " & routestep & " RP: " & nextrp & " No escort")
 startFuel = startFuel + RPdist(currentRP, nextrp) * TnkParams(tnkbase, 1) + RefuelPoints(nextrp, 4)
 If RefuelPoints(nextrp, 4) <> 0 Then 'if nextRP is not an escort point then update the number of RPs remaining
 numRP = numRP - 1
 RPList(nextrp) = 0
 RPvisited = RPvisited + 1
 End If
 currentRP = nextrp

 ElseIf RefuelPoints(currentRP, 7) = RefuelPoints(nextrp, 7) Then
 'No escort needed for this route. Refuel points has same coordinates
 routestep = routestep + 1
 antroutes(route, routestep) = nextrp
 AntTravel = AntTravel + RPdist(currentRP, nextrp)
 PT(currentRP, nextrp) = 1
 'If ACOcall = 1 Then MsgBox ("Route: " & Route & " Step: " & routestep & " RP: " & nextrp & " same rp")
 startFuel = startFuel + RPdist(currentRP, nextrp) * TnkParams(tnkbase, 1) + RefuelPoints(nextrp, 4)
 If RefuelPoints(nextrp, 4) <> 0 Then 'if nextRP is not an escort point then update the number of RPs remaining
 numRP = numRP - 1
 RPList(nextrp) = 0
 RPvisited = RPvisited + 1
 End If
 currentRP = nextrp

 Else 'Escort is needed

 crntescort = RefuelPoints(currentRP, 8)
 routestep = routestep + 1
 antroutes(route, routestep) = nextrp
 AntTravel = AntTravel + RPdist(currentRP, nextrp)
 PT(currentRP, nextrp) = 1
 startFuel = startFuel + RPdist(currentRP, nextrp) * TnkParams(tnkbase, 1) + RefuelPoints(nextrp, 4)
 'If ACOcall = 1 Then MsgBox ("Route: " & Route & " Step: " & routestep & " RP: " & nextrp & " escort needed")
 If RPList(currentRP) = 1 Then 'deletes currentRP from list if needed
 numRP = numRP - 1
 RPList(currentRP) = 0
 RPvisited = RPvisited + 1
 End If

 If RefuelPoints(nextrp, 4) <> 0 Then 'if nextRP is not an escort, then take off list
 numRP = numRP - 1
 RPList(nextrp) = 0
 RPvisited = RPvisited + 1
 End If
 currentRP = nextrp

 End If

 Else 'There are no valid points within range of current point

65 65

 If routestep <> 1 Then
 route = route + 1
 routestep = 1
 antroutes(route, routestep) = currentRP
 AntTravel = AntTravel + RPdist(currentRP, totalRP + tnkbase) 'adds in new route initial leg
 PT(currentRP, totalRP + tnkbase) = 1
 If ACOcall = 1 Then 'If considering all bases, then call function to find best start pt
 tnkbase = tankerFind(currentRP, totalRP)
 End If
 'If ACOcall = 1 Then MsgBox ("Route: " & Route & " Step: " & routestep & " RP: " & currentRP & " New route continue")
 startFuel = TnkParams(tnkbase, 2) + (RPdist(currentRP, totalRP + tnkbase) - 100) * TnkParams(tnkbase, 1) +
RefuelPoints(currentRP, 4)

 Else
 If RPList(currentRP) = 1 Then
 RPList(currentRP) = 0
 numRP = numRP - 1
 RPvisited = RPvisited + 1
 End If
 If RefuelPoints(currentRP, 4) <> 0 Then
 AntTravel = AntTravel + RPdist(currentRP, totalRP + tnkbase) 'adds in return leg
 route = route + 1
 RPvisited = RPvisited + 1
 PT(currentRP, totalRP + tnkbase) = 1
 Else
 antroutes(route, routestep) = "" 'clears out antroute for unneeded leg
 tnkroutes(route) = "" 'clears out tnkroutes for unneeded leg
 AntTravel = AntTravel - RPdist(currentRP, totalRP + tnkbase) 'subtracts unneeded leg
 PT(currentRP, totalRP + tnkbase) = 0
 End If

 If numRP <> 0 Then
 While RPList(currentRP) <> 1
 currentRP = currentRP + 1
 If currentRP > totalRP Then currentRP = 1
 Wend
 antroutes(route, routestep) = currentRP
 AntTravel = AntTravel + RPdist(currentRP, totalRP + tnkbase) 'adds in new route initial leg
 PT(currentRP, totalRP + tnkbase) = 1

 If ACOcall = 1 Then 'If considering all bases, then call function to find best start pt
 tnkbase = tankerFind(currentRP, totalRP)
 End If
 'If ACOcall = 1 Then MsgBox ("Route: " & Route & " Step: " & routestep & " RP: " & currentRP & " new route new
point")
 If RefuelPoints(currentRP, 4) <> 0 Then
 numRP = numRP - 1
 RPList(currentRP) = 0
 RPvisited = RPvisited + 1
 End If
 startFuel = TnkParams(tnkbase, 2) + (RPdist(currentRP, totalRP + tnkbase) - 100) * TnkParams(tnkbase, 1) +
RefuelPoints(currentRP, 4)

 End If
 End If
 End If

 'This ensures that the escort to the starting RP is made
 If currentRP = prevescort Then
 If RPList(RefuelPoints(startRP, 8)) = 0 Then
 RPList(RefuelPoints(startRP, 8)) = 1
 numRP = numRP + 1
 prevescort = ""
 End If
 End If

 Wend
 If antroutes(route, 1) = "" Then route = route - 1

66 66

 numAnts = numAnts + 1

End Sub

Sub schedule(totalRP)
'This subroutine is used to determine the schedules based on the routes generated by the ACO heuristic
'Uses "antroutes" and "tnkroutes" array generated by ACO heuristic
ReDim adjustment(1 To numreceivergroups) As Variant
ReDim routeRG(1 To totalRP, 3) As Variant
ReDim RouteInfo(1 To totalRP, 9) As Variant
ReDim RGarray(1 To numreceivergroups) As Variant
ReDim tnkAssign(1 To numTankerBases, 1 To totalRP) As Variant
ReDim tnkstart(1 To numTankerBases, 1 To totalRP) As Variant
ReDim tnkfinish(1 To numTankerBases, 1 To totalRP) As Variant
ReDim NewAntRoute(1 To totalRP, 1 To totalRP) As Variant
ReDim newtnkroute(1 To totalRP) As Variant
ReDim tnkcount(1 To numTankerBases) As Variant
ReDim tankersched(4, 0 To totalRP) As Variant

 numbases = 0
 numtanker = 0
 'Calculates the Earliest Start (ES) time for the first RP of a RG based on the time it takes tanker to
 'read the RP. Also generates the amount of slack in each RG and adjusts the ES for all other RPs in route

 firstrp = 1
 For i = 2 To totalRP
 If RefuelPoints(i - 1, 1) <> RefuelPoints(i, 1) Or i = totalRP Then
 RG = RefuelPoints(i - 1, 11) '=current RG being evaluated
 lastrp = i - 1 '=last RP in RG
 tnkleadtime = TnkTime(tnkroutes(RG), firstrp)

 'if tanker arrival time is greater than the RG arrival, calculate the delta and store as adjustment

 If tnkleadtime > RefuelPoints(firstrp, 5) Then
 adjustment(RG) = tnkleadtime - RefuelPoints(firstrp, 5)

 Else
 adjustment(RG) = 0
 End If
 'Calculates the total RG flight time (RGtiming(i,4)) and the RG slack time (RGtiming(i,3))
 RGtiming(RG, 4) = RefuelPoints(lastrp, 5) + GreatCircleDistance(RefuelPoints(lastrp, 2), RefuelPoints(lastrp, 3),
RefuelInfo(RG, 4), RefuelInfo(RG, 5)) / MissionPlan(RG, 11)
 RGtiming(RG, 3) = RGtiming(RG, 2) - RGtiming(RG, 4) - adjustment(RG)
 firstrp = i '=first RP in next RG

 End If

 Next i

 'adjust the ES of each RP based on the calculated adjustment delta calculated above
 For i = 1 To totalRP
 RG = RefuelPoints(i, 11)
 RefuelPoints(i, 5) = RefuelPoints(i, 5) + adjustment(RG)
 Next i

 'Populates array to keep track of which receivergroups haven't been scheduled
 For i = 1 To numreceivergroups
 RGarray(i) = 1
 Next i

 'Arranges the ant routes chronologically within their RG

 Start = 1
 Startrg = RefuelPoints(antroutes(1, 1), 11)

67 67

 prev = 1
 For i = 2 To route
 If RefuelPoints(antroutes(i, 1), 11) = Startrg And i = prev + 1 Then 'Finds the actual first route
 prev = prev + 1
 ElseIf RefuelPoints(antroutes(i, 1), 11) = Startrg Then
 Start = i 'stores location of first route in antroutes array
 GoTo getout
 End If
 Next i
getout:

 Move = 0
 For i = Start To route
 For m = 1 To totalRP
 NewAntRoute(Move + 1, m) = antroutes(i, m) 'moves route to head
 Next m
 newtnkroute(Move + 1) = tnkroutes(i)
 Move = Move + 1 'keeps track of number of routes moved to head
 Next i

 If Start <> 1 Then
 For i = 1 To Start - 1 'replaces tail
 For m = 1 To totalRP
 NewAntRoute(i + Move, m) = antroutes(i, m)
 Next m
 newtnkroute(i + Move) = tnkroutes(i)
 Next i
 End If

 'Finds the RG that is serviced by each antroute then
 'Also creates array of pertinent info for scheduling
 For i = 1 To route
 routeRG(i, 1) = RefuelPoints(NewAntRoute(i, 1), 11) 'associates a RG with each ant route
 RouteInfo(i, 1) = NewAntRoute(i, 1)
 prev = 1
 nextrp = 2
 RouteInfo(i, 3) = 0
 While NewAntRoute(i, nextrp) <> ""
 RouteInfo(i, 3) = RouteInfo(i, 3) + RPdist(nextrp, prev) 'finds total length of route
 prev = nextrp
 nextrp = nextrp + 1
 Wend
 RouteInfo(i, 2) = NewAntRoute(i, prev)

 Next i

 'Schedule receivergroups based on least slack

 For j = 1 To numreceivergroups
 Start = 1
 While RGarray(Start) = 0 'finds next unscheduled RG
 Start = Start + 1
 Wend

 'finds the unscheduled job with least slack
 leastslack = RGtiming(Start, 3)
 slackjob = Start
 For i = 1 To numreceivergroups
 If RGarray(i) = 1 Then
 If RGtiming(i, 3) < leastslack Then
 leastslack = RGtiming(i, 3)
 slackjob = i
 End If
 End If
 Next i

68 68

 RGarray(slackjob) = 0

 'This section uses LST to do final scheduling of routes

 For i = 1 To route

 If routeRG(i, 1) = slackjob Then 'for each route that is in the slack job

 'schedule tankers to routes

 Start = 1
 firstrp = RouteInfo(i, 1) 'first RP in route
 lastrp = RouteInfo(i, 2) 'last RP in route
 tnkbseused = newtnkroute(i) 'tanker base to use

 RouteInfo(i, 7) = RefuelPoints(firstrp, 5) - TnkTime(tnkbseused, firstrp) 'tanker takeoff
 RouteInfo(i, 8) = RefuelPoints(lastrp, 5) + TnkTime(tnkbseused, lastrp) 'tanker land

 'Check to see if you can use an existing tanker from base required
 For k = 0 To numbases
 If tankersched(1, k) = tnkbseused Then
 'if this tanker base already is used check for reuse possibility
 If RouteInfo(i, 7) >= tankersched(4, k) + 3 And RouteInfo(i, 8) Then 'if start is after finish of existing
 GoTo jumpout
 Else 'shift routes backwards
 shiftfactor = tankersched(4, k) + 3 - RouteInfo(i, 7)
 If RGtiming(slackjob, 4) + shiftfactor <= RGtiming(slackjob, 2) Then
 Call RPshift(slackjob, totalRP, shiftfactor)
 RGtiming(slackjob, 4) = RGtiming(slackjob, 4) + shiftfactor
 tankersched(1, numbases) = tnkbseused
 tankersched(2, numbases) = tankersched(2, k)
 tankersched(3, numbases) = RouteInfo(i, 7)
 tankersched(4, numbases) = RouteInfo(i, 8)
 Else
 GoTo newbase
 End If

 End If

 End If
 Next k

newbase:
 'otherwise assign a new tanker to service route i
 numbases = numbases + 1
 tankersched(1, numbases) = tnkbseused
 tankersched(2, numbases) = tnkcount(tnkbseused) + 1
 tankersched(3, numbases) = RouteInfo(i, 7)
 tankersched(4, numbases) = RouteInfo(i, 8)
 RouteInfo(i, 9) = numbases 'associates the column number of this tanker with the route
 tnkcount(tnkbseused) = tnkcount(tnkbseused) + 1 'update tail numbers used

 numtanker = numtanker + 1 'update total tankers used

 End If
jumpout:
 Next i

 Next j

69 69

End Sub

Sub RPshift(RG, totalRP, shift)

For i = 1 To totalRP
 If RefuelPoints(i, 11) = RG Then
 RefuelPoints(i, 5) = RefuelPoints(i, 5) + shift

 End If
Next i

End Sub

Function fighterescort(k, totalRP)
'This function is called to find the "Escort" point for a fighter's refueling point

 temp = k + 1
 fighterescort = 0
 'Looks at next RP. If it belongs to same RG and has different escort point then save this RP
 'Otherwise look at the next RP
 If temp <= totalRP Then
 While RefuelPoints(k, 1) = RefuelPoints(temp, 1) And fighterescort = 0
 If RefuelPoints(k, 8) = RefuelPoints(temp, 8) Then
 temp = temp + 1 'Increments temp
 If temp > totalRP Then GoTo final

 Else
 fighterescort = RefuelPoints(temp, 8)
 End If

 Wend
 End If
final:
End Function

Function tankerFind(k, rpcount)
' This subroutine determines which tanker should be selected to service the first RP in a route

 bestprob = -999
 For i = 1 To numTankerBases
 'Checks to see if tanker can make roundtrip journey and meet offload requirement
 'Roundtrip fuel < max capacity - fuel reserve - required offload
 'If it is within range, calculate the ACO prob function for it.
 If TankerFuel(i, k) <= TnkParams(i, 3) - RefuelPoints(k, 4) Then

 probfunction = pheromone(k, rpcount + i) ^ alpha + (10000 / (RPdist(k, rpcount + i) + 1)) ^ beta

 End If
 If probfunction > bestprob Then
 bestprob = probfunction
 tankerFind = i 'stores tankerbase if probfunction is better than any previous
 End If

 Next i

End Function

70 70

'Subroutine Name: TankerReturn()
'Functionality: This button checks the user input for errors. It insures that the base listing and
' tanker type are valid as well as the number of tankers at each base. If all data is
' valid then it returns user to the main menu

'Arguments: None

Sub TankerReturn()

 ' Reads in tanker base sheet for error checking

 Set tempfile = Sheets("TankerBases").Range("A4").CurrentRegion
 tankerBases = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 numTankerBases = tempfile.Rows.Count - 1

 'Reads in AIRBASES worksheet to check for correct ICAO

 Set tempfile = Sheets("AIRBASES").Range("A3").CurrentRegion
 globalbaselist = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 NumGlobalBases = tempfile.Rows.Count - 1

 'Reads in TANKER DATA worksheet to check for correct tanker type

 Set tempfile = Sheets("TANKER DATA").Range("A4").CurrentRegion
 tankers = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 numTankertypes = tempfile.Rows.Count - 1

 ' Checks to see if the entered tanker base is already present in the Airbase listing. If not print
 ' out an error message and return control to that sheet to allow user to make required changes

 For i = 1 To numTankerBases
 RowIndex = Find(tankerBases(i, 1), globalbaselist, NumGlobalBases)
 If RowIndex = -1 Then
 MsgBox ("Error: " & tankerBases(i, 1) & " in row " & i + 3 & " is not a valid ICAO. Either enter a new ICAO or add this
ICAO to the Airbase Listing")
 GoTo Quit
 End If

 ' Checks to see if user enters a positive number of tanker bases. If not print out an error message
 ' and return control to that sheet to allow user to make required changes

 If tankerBases(i, 2) <= 0 Then
 MsgBox ("Error: the number of tankers entered in row " & i + 3 & " is not valid. Must enter a positive number of planes")
 GoTo Quit
 End If

 ' Checks to see if the entered tanker type is already present in the Tanker listing. If not print
 ' out an error message and return control to that sheet to allow user to make required changes

 RowIndex = Find(tankerBases(i, 3), tankers, numTankertypes)
 If RowIndex = -1 Then
 MsgBox ("Error: " & tankerBases(i, 3) & " in row " & i + 3 & " is not a valid tanker type. Either enter a new tanker or add this
tanker to the Tanker Listing")
 GoTo Quit
 End If
 Next i

 ' If all entered data is correct, return to main menu

 Sheets("Menu").Activate

 ' If a piece of data is incorrect, then return to TANKERBASES worksheet so corrections can be made
Quit:
End Sub

'Subroutine Name: AirbaseReturn
'Functionality: This button checks the user input for errors. It insures that the base listing and

71 71

' tanker type are valid as well as the number of tankers at each base. If all data is
' valid then it returns user to the previous worksheet.
'Arguments: None

Sub AirbaseReturn()

 'Reads in AIRBASES worksheet to check for correct ICAO

 Set tempfile = Range("A3").CurrentRegion
 globalbaselist = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 NumGlobalBases = tempfile.Rows.Count - 1

 ' Checks to see if the entered latitude and longitude are valid. FIrst check is to ensure a value is
 ' entered. Secondly it ensures lat/long value is less than 180 degrees. If invalid data is entered
 ' the user is notified the airbase and row that is invalid and allows user to update.

 For i = 1 To NumGlobalBases
 If globalbaselist(i, 4) = "" Or Abs(globalbaselist(i, 4)) > 18000 Then
 MsgBox ("Error: Need to enter a valid latitude for airbase " & globalbaselist(i, 1) & " in row " & i + 3)
 GoTo Quit
 End If

 If globalbaselist(i, 5) = "" Or Abs(globalbaselist(i, 5)) > 18000 Then
 MsgBox ("Error: Need to enter a valid longitude for airbase " & globalbaselist(i, 1) & " in row " & i + 3)
 GoTo Quit
 End If

 Next i

 ' If all the information is correct, then return to the previous screen

 Sheets(AirbaseCall).Activate 'returns to main menu if called from it

 ' If a piece of data is incorrect, then return to Airbases worksheet so corrections can be made
Quit:

End Sub

'Subroutine Name: ReceiverGroupReturn
'Functionality: This button checks the user input for errors. It insures that the base listings and
' receier types are valid as well as the number of tankers at each base. If all data is
' valid then it returns user to the previous worksheet.
'Arguments: None

Sub ReceiverGroupReturn()

 'Reads in INPUT worksheet for error checking

 Set tempfile = Sheets("INPUT").Range("A6").CurrentRegion
 Receiverdata = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 numreceivergroups = tempfile.Rows.Count - 1

 'Reads in AIRBASES worksheet to check for correct ICAO

 Set tempfile = Sheets("AIRBASES").Range("A3").CurrentRegion
 globalbaselist = tempfile.Offset(1, 0).Resize(tempfile.Rows.Count - 1, tempfile.Columns.Count)
 NumGlobalBases = tempfile.Rows.Count - 1

 'Reads in RECEIVER DATA information for error checking

 Set tempfile = Sheets("RECEIVER DATA").Range("A5").CurrentRegion
 receivers = tempfile.Offset(2, 0).Resize(tempfile.Rows.Count - 2, tempfile.Columns.Count)
 Numreceivertypes = tempfile.Rows.Count - 2

 ' Checks to see if ICAO listings for bases are currently defined
 For i = 1 To numreceivergroups

72 72

 'Check Receiver type
 RowIndex = Find(Receiverdata(i, 2), receivers, Numreceivertypes)
 If RowIndex = -1 Then
 MsgBox ("Error: " & Receiverdata(i, 2) & " in row " & i + 6 & " is not a valid receiver type. Either enter a new receiver or
add this receiver to the Receiver Data Listing")
 GoTo Quit
 End If

 'Check Base of Origin
 RowIndex = Find(Receiverdata(i, 4), globalbaselist, NumGlobalBases)
 If RowIndex = -1 Then
 MsgBox ("Error: " & Receiverdata(i, 4) & " in row " & i + 6 & " is not a valid ICAO. Either enter a new ICAO or add this
ICAO to the Airbase Listing")
 GoTo Quit
 End If

 'Check destination base
 RowIndex = Find(Receiverdata(i, 5), globalbaselist, NumGlobalBases)
 If RowIndex = -1 Then
 MsgBox ("Error: " & Receiverdata(i, 5) & " in row " & i + 6 & " is not a valid ICAO. Either enter a new ICAO or add this
ICAO to the Airbase Listing")
 GoTo Quit
 End If

 ' Checks to see if user enters a positive number of tanker bases. If not print out an error message
 ' and return control to that sheet to allow user to make required changes

 If Receiverdata(i, 3) <= 0 Then
 MsgBox ("Error: the number of receivers entered in row " & i + 6 & " is not valid. Must enter a positive number of planes")
 GoTo Quit
 End If

 ' Checks to see if user enters a positive for ALD and RDD, and that ALD is before RDD. If not print out an error message
 ' and return control to that sheet to allow user to make required changes

 If Receiverdata(i, 12) <= 0 Then
 MsgBox ("Error: the ALD in row " & i + 6 & " is not valid. Must enter a positive number of planes")
 GoTo Quit
 End If

 If Receiverdata(i, 13) <= 0 Then
 MsgBox ("Error: the RDD in row " & i + 6 & " is not valid. Must enter a positive number of planes")
 GoTo Quit
 End If

 If Receiverdata(i, 12) >= Receiverdata(i, 13) Then
 MsgBox ("Error: ALD must be before RDD in row " & i + 6)
 GoTo Quit
 End If

 Next i

 Sheets("Menu").Activate
Quit:

End Sub

'Subroutine Name: ReceiverReturn
'Functionality: This button returns user to the previous worksheet.
'Arguments: None
Sub ReceiverReturn()

 ' Return from Receiver Data Worksheet

 Sheets(ReceiverCall).Activate 'returns to main menu if called from it

73 73

End Sub
'Subroutine Name: TankerDataReturn
'Functionality: This button returns user to the previous worksheet.
'Arguments: None
Sub TankerDataReturn()

 ' Return from Receiver Data Worksheet

 Sheets(TankerCall).Activate 'returns to main menu if called from it

End Sub

Public AirbaseCall As String
Public TankerCall As String
Public ReceiverCall As String

'Subroutine Name: InputReceiverGroups()
'Functionality: This function takes user to sheet to add or change
' receiver groups

'Arguments: None

Sub InputReceiverGroups()

 Sheets("INPUT").Activate

End Sub

'Subroutine Name: MainMenu
'Functionality: This function returns user to main menu
'Arguments: None

Sub MainMenu()

 Sheets("Menu").Activate

End Sub

'Subroutine Name: TankerInput
'Functionality: This function allows user to input tanker bases available
'Arguments: None

Sub TankerInput()

 Sheets("TankerBases").Activate

End Sub

'Subroutine Name: ReceiverAircraftData
'Functionality: This function allows user to add or change receiver aircraft
' performance data
'Arguments: None

Sub ReceiverAircraftData()
 ReceiverCall = ActiveCell.Worksheet.name
 Sheets("RECEIVER DATA").Activate

End Sub

'Subroutine Name: AirbaseInfo
'Functionality: This function allows user to adjust worldwide airbase info
'Arguments: None

Sub AirbaseInfo()
 AirbaseCall = ActiveCell.Worksheet.name
 Sheets("AIRBASES").Activate

74 74

End Sub

'Subroutine Name: TankerAircraftData
'Functionality: This function allows user to add or change tanker performance data
'Arguments: None

Sub TankerAircraftData()
 TankerCall = ActiveCell.Worksheet.name
 Sheets("TANKER DATA").Activate

End Sub

'Subroutine Name: RefuelingPoints
'Functionality: This function allows user to view refueling point info
'Arguments: None

Sub RefuelingPoints()

 Sheets("Refueling Points").Activate

End Sub

'Subroutine Name: MissionPlan
'Functionality: This function allows user to view final mission plan info

Sub MissionPlan()

 Sheets("Best Mission Plan").Activate

End Sub

'Subroutine Name: ClearTankerBases()
'Functionality: This function clears the Tanker Base Worksheet

'Arguments: None

Sub ClearTankerBases()
 Set tempfile = Range("A4").CurrentRegion
 numTankerBases = tempfile.Rows.Count - 1
 Range(Cells(4, 1), Cells(numTankerBases + 4, 3)).Select
 Selection.ClearContents
End Sub

'Subroutine Name: ClearReceiverGroups
'Functionality: This function clears the Receiver Group Worksheet
'Arguments: None

Sub ClearReceiverGroups()
 Set tempfile = Sheets("INPUT").Range("A6").CurrentRegion
 numreceivergroups = tempfile.Rows.Count - 1
 Range(Cells(7, 1), Cells(numreceivergroups + 7, 23)).Select
 Selection.ClearContents
End Sub

75 75

'Function Name: Ceiling
'Functionality: This function rounds fractional numbers
' to the next highest integer
'Arguments: x - The function finds the ceiling of x
'Return Value: Ceiling - the ceiling of x

Function Ceiling(x)
 temp = CInt(x)
 temp1 = temp - x
 If temp1 > 0 Then
 Ceiling = temp
 Else
 Ceiling = temp + 1
 End If
End Function

'Function Name: Max
'Functionality: This function finds the largest of two numbers
'Arguments: a and b
'Return Value: Max - the largest of the two arguments a and b

Function Max(a, b)
 If a > b Then
 Max = a
 Else
 Max = b
 End If
End Function

'Function Name: Floor
'Functionality: This function rounds fractional numbers
' to the next lolwest integer
'Arguments: x - The function finds the floor of x
'Return Value: floor - the floor of x

Function Floor(x)

 temp = Abs(x)
 temp = Ceiling(temp)
 If x > 0 Then
 Floor = temp - 1
 Else
 Floor = -temp
 End If
End Function

'Function Name: Find
'Functionality: This function determines the row position
' of a given aircraft in the distcalc or
' aircraft performance matrices
'Arguments: item - the name of the aircraft to find
' list - the matrix to search
' total - the number of rows in the search matrix
'Return Value: pos - the row position of the aircraft

Function Find(item, list, total)
 pos = 1
 found = False
 While Not found
 If StrComp(item, list(pos, 1)) = 0 Then
 Find = pos
 found = True
 Else
 pos = pos + 1
 End If
 If pos > total Then
 Find = -1

76 76

 found = True
 End If
 Wend
End Function

'Function Name: OffloadCheck
'Functionality: This function determines the minimum number of
' tankers that can service a given refueling point
'Arguments: offload - the required fuel at refueling point
' latRP - latitude of the refueling point
' longRP - longitude of the refueling point
'Return Value: pos - the minimum number of tankers that can meet the offload requirement
Function OffloadCheck(offload, latRP, longRP)

 mintankers = 100 'Initialize number of tankers needed to be very large
 For t = 1 To numTankerBases
 ' Calculates distance between RP and tankerbase, finds the tanker type, and then calculates the roundtrip fuel
 ' needed to reach refueling point and then return (Stores the fuel needed as FuelTravel)
 dist = GreatCircleDistance(latRP, longRP, tankBases(t, 3), tankBases(t, 4))
 RowIndex = Find(tankBases(t, 6), tankers, numTankertypes)
 FuelTravel = tankers(RowIndex, 7) + (2 * dist - 100) * tankers(RowIndex, 4) / tankers(RowIndex, 3)
 'Calculate the offload available at the RP
 maxtankeroffload = tankers(RowIndex, 5) - tankers(RowIndex, 6) - FuelTravel
 'If tanker can refuel, calculate the number needed to meet this RP requirement
 If maxtankeroffload > 0 Then required = Ceiling(offload / maxtankeroffload)
 If required < mintankers Then mintankers = required
 Next t
 offload = mintankers 'Assigns offload to the minimum number of tankers required to refuel this RP

End Function

'Subroutine Name: setWddefaults
'Functionality: This function sets the winds to zero
'Arguments: None

Sub setWddefaults()

missions = Application.Count(Sheets("INPUT").Range("C7:C200"))

For i = 1 To missions
 Sheets("WINDS").Cells(i + 6, 1) = 0
 Sheets("WINDS").Cells(i + 6, 2) = 0
Next i

End Sub

'Subroutine Name: setGWdefaults()
'Functionality: This function sets the default values for the weight
' characteristics of receiver aircraft. Including:
' 1) Minimum Weight Empty
' 2) Payload Weight
' 3) Fuel Weight
' The default values are set in the AIRCRAFT PERFORMANCE sheet
'Arguments: None

Sub setdefaults()

missions = Application.Count(Sheets("INPUT").Range("C7:C207"))
rdata = Sheets("INPUT").Range("A7:P207")

rec = Application.Count(Sheets("AIRCRAFT PERFORMANCE").Range("B5:B37"))
receivers = Sheets("AIRCRAFT PERFORMANCE").Range("A5:P37")

For i = 1 To missions
 ind = Find(rdata(i, 2), receivers, rec)
 Sheets("INPUT").Cells(i + 6, 9) = receivers(ind, 10)
 Sheets("INPUT").Cells(i + 6, 10) = receivers(ind, 11)

77 77

 Sheets("INPUT").Cells(i + 6, 11) = receivers(ind, 5)
 Sheets("INPUT").Cells(i + 6, 8) = receivers(ind, 8)
 Sheets("INPUT").Cells(i + 6, 7) = receivers(ind, 3)
Next i
End Sub

78 78

'Module: DistCalc
'Function: This module contains the functions for calculating the great circle
' distance from the origin to the destination bases

'Function Name: DecDeg
'Functionality: To decode the DDDMM.M format (where D=degrees, M=Minutes) for Latitude
' and Longitude to degrees.
'Arguments: Number - Value passed to function in DDDMM.M format
'Return Value: Temp - the Latitude or Longitude in degrees
Private Function DecDeg(number1)

 num = Abs(number1) ' Get absolute value of Number to use in Int()

 temp = Int(num / 100) + (num / 100 - Int(num / 100)) / 0.6
 ' Convert by separating integer degrees from
 ' minutes portion. Then divide minutes by 60
 ' to get fractional degrees and add to integer
 ' degrees.

 If num > number1 Then ' Check that Temp has same sign (+/-) as Number
 temp = -temp ' before assigning to return value
 End If
 DecDeg = temp ' Assign Temp to function's return value
End Function
Function DegDec(number2)

 num = Abs(number2)

 temp = (Floor(num) * 100) + (60 * (num - Floor(num)))

 If number2 < 0 Then temp = -temp

 DegDec = temp
End Function

'Function Name: GreatCircleDistance
'Functionality: To compute great circle distance between two points on Earth. Points
' are (Latitude1, Longitude1) and (Latitude2, Longitude2). This function
' accepts latitude and longitude in real degrees or in DDDMM.M format.
'Arguments: latitude1 - origin latitude
' longitude1 - orgin longitude
' latitude2 - destination latitude
' longitude2 - destination longitude
'Return Value: GreatCircleDistance - the great circle distance

Function GreatCircleDistance(latitude1, longitude1, latitude2, longitude2)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions
 NMperDeg = 60

 lat1 = latitude1
 lat2 = latitude2
 long1 = longitude1
 long2 = longitude2

 If (Abs(lat1) > 90) Or (Abs(lat2) > 90) Or (Abs(long1) > 180) Or (Abs(long2) > 180) Then
 lat1 = DecDeg(lat1) ' Assumes all coordinates are in same
 lat2 = DecDeg(lat2) ' format. If any are found in DDDMM.M
 long1 = DecDeg(long1) ' format then convert all to degrees.
 long2 = DecDeg(long2)
 End If

 lat1 = lat1 * Deg2Rad ' Convert all degrees to radians
 lat2 = lat2 * Deg2Rad
 long1 = long1 * Deg2Rad

79 79

 long2 = long2 * Deg2Rad

 temp = Cos(lat1) * Cos(lat2) * Cos(long2 - long1)

 If lat1 = lat2 And long1 = long2 Then
 GreatCircleDistance = NMperDeg * temp
 Else
 temp = Application.Acos(temp + Sin(lat1) * Sin(lat2)) * Rad2Deg
 ' Calculated the angle of the great circle
 ' arc between the two points. Formula
 ' came from original AMCSAF Distcalc
 ' spreadsheet. Uses Excel's ACOS().

 GreatCircleDistance = NMperDeg * temp ' Convert arc degrees to NM and return
 End If
End Function
Function getAz(latitude1, longitude1, latitude2, longitude2)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions
 NMperDeg = 60

 lat1 = latitude1
 long1 = longitude1
 lat2 = latitude2
 long2 = longitude2
 dist = GreatCircleDistance(lat1, long1, lat2, long2)

 If (Abs(lat2) > 90) Or (Abs(long1) > 180) Or (Abs(long2) > 180) Then
 lat1 = DecDeg(lat1) ' Assumes all coordinates are in same
 lat2 = DecDeg(lat2) ' format. If any are found in DDDMM.M
 long1 = DecDeg(long1) ' format then convert all to degrees.
 long2 = DecDeg(long2)
 End If

 lat1 = lat1 * Deg2Rad
 lat2 = lat2 * Deg2Rad
 long1 = long1 * Deg2Rad
 long2 = long2 * Deg2Rad
 dist = dist / NMperDeg
 dist = dist * Deg2Rad

 sinAz = (Cos(lat2) * Sin(long2 - long1) / Sin(dist))
 cosAz = ((Sin(lat2) - (Cos(dist) * Sin(lat1))) / (Sin(dist) * Cos(lat1)))
 If sinAz >= 0 And cosAz >= 0 Then
 temp = Application.Asin(sinAz)
 ElseIf sinAz >= 0 And cosAz < 0 Then
 temp = 3.14159265358979 - Application.Asin(sinAz)
 ElseIf cosAz >= 0 Then
 temp = -Application.Acos(cosAz)
 Else
 temp = -(3.14159265358979 + Application.Asin(sinAz))
 End If
 temp = temp * Rad2Deg
 getAz = temp
End Function
Function getLat(latitude1, distance, azymuth)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions
 NMperDeg = 60

 lat1 = latitude1
 dist = distance
 Az = azymuth

 If (Abs(lat1) > 90) Then lat1 = DecDeg(lat1)

80 80

 lat1 = lat1 * Deg2Rad
 dist = dist / NMperDeg
 dist = dist * Deg2Rad
 Az = Az * Deg2Rad

 temp = Application.Acos(Sin(lat1) * Cos(dist) + Cos(lat1) * Sin(dist) * Cos(Az))
 temp = temp * Rad2Deg
 temp = 90 - temp
 getLat = DegDec(temp)
End Function
Function getLong(longitude1, distance, azymuth, latitudeRP)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions
 NMperDeg = 60

 long1 = longitude1
 dist = distance
 Az = azymuth
 latRP = latitudeRP

 If (Abs(long1) > 90) Or (Abs(latRP) > 90) Then
 long1 = DecDeg(long1)
 latRP = DecDeg(latRP)
 End If

 dist = dist / NMperDeg
 dist = dist * Deg2Rad
 Az = Az * Deg2Rad
 latRP = latRP * Deg2Rad
 long1 = long1 * Deg2Rad

 temp = Application.Asin(Sin(dist) * Sin(Az) / Cos(latRP))
 temp = temp + long1
 temp = temp * Rad2Deg
 If temp > 180 Then temp = temp - 360
 getLong = DegDec(temp)
End Function

Function TrueCourse(dist, latitude1, longitude1, latitude2, longitude2)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions
 p = 3.1415926535897

 la1 = latitude1
 lg1 = longitude1
 la2 = latitude2
 lg2 = longitude2

 If (Abs(la1) > 90) Or (Abs(la2) > 90) Or (Abs(lg1) > 180) Or (Abs(lg2) > 180) Then
 la1 = DecDeg(la1) ' Assumes all coordinates are in same
 la2 = DecDeg(la2) ' format. If any are found in DDDMM.M
 lg1 = DecDeg(lg1) ' format then convert all to degrees.
 lg2 = DecDeg(lg2)
 End If

 la1 = la1 * Deg2Rad ' Convert all degrees to radians
 la2 = la2 * Deg2Rad
 lg1 = lg1 * Deg2Rad
 lg2 = lg2 * Deg2Rad
 d = (dist / 60) * Deg2Rad

81 81

 H1 = Application.Acos((Sin(la2) - Sin(la1) * Cos(d)) / (Sin(d) * Cos(la1)))
 H2 = Application.Acos((Sin(la1) - Sin(la2) * Cos(d)) / (Sin(d) * Cos(la2)))

 If Sin(lg2 - lg1) < 0 Then
 Hi1 = H1
 Else
 Hi1 = 2 * p - H1
 End If

 If Sin(lg1 - lg2) < 0 Then
 Hi2 = H2
 Else
 Hi2 = 2 * p - H2
 End If

 If Hi2 >= p Then
 Hi2 = Hi2 - p
 Else
 Hi2 = Hi2 + p
 End If
 TrueCourse = (Hi1 + Hi2) / 2 * Rad2Deg

End Function

Function GroundSpeed(tas, TC, Wd, Wv)

 Deg2Rad = 3.14159265358979 / 180 'Define constants
 Rad2Deg = 180 / 3.14159265358979 'for angle conversions

 TCr = TC * Deg2Rad

 Wdr = Wd * Deg2Rad
 DCA = Application.Asin((Wv / tas) * Sin(Wdr - TCr))
 GroundSpeed = tas * Cos(DCA) - Wv * Cos(Wdr - TCr)

End Function

82 82

'Function Name: fuelburn
'Functionality: This function is used to determine the fuel
' burned by a given fighter for a period of
' flight given by: Flight time = Distance/True Air Speed
' The algorithm assumes a nominal flight altitude and
' true air speed. The fuel flow is calculated with a third
' order polynomial model of the fuel flow depending on gross weight.
' It is assumed that the fighter's fuel is burned down to
' the fuel reserve level and then completely refueled.
'Arguments: dist - the distance the fighter will travel
' tas - the true airspeed the fighter will travel at
' r - the fighter performance matrix
' j - the position of the desired fighter in the performance matrix
'Return Value: totfb - total fuel burned over the flight

Function recflburn(dist, rate, fuelcap, reserve, minwt, cargo, climbf, c1, c2, c3, c4)

 fb = 0
 totfb = climbf
 ff = 0
 mult = 0

 gw = 0
 gwi = fuelcap + minwt + cargo
 maxburn = fuelcap - reserve

 Flighttime = dist / rate
 dt = 0.01

 For t = 1 To Flighttime * 100
 Nar = Ceiling(totfb / maxburn) - 1
 gw = gwi - totfb + Nar * maxburn
 ff = c1 + c2 * gw + c3 * gw * gw + c4 * gw * gw * gw
 fb = ff * dt
 totfb = totfb + fb
 Next t

 recflburn = totfb

End Function

Function tnkrflburn(dist, rrate, trate, rgs, tgs, fuelcap, reserve, minwt, cargo, climbf, ralt, talt, c1, c2, c3, c4, c5, c6, c7, test)

 t = 0
 dt = 0.01
 maxburn = fuelcap - reserve
 fb = 0
 ff = 0
 gw = 0
 gwi = fuelcap + minwt + cargo
 totfb = climbf

 If StrComp(test, "F") = 0 Then
 fltm = 0.5 * dist / rgs + 0.5 * dist / tgs
 ElseIf StrComp(test, "R") = 0 Then
 fltm = dist / rgs
 Else
 fltm = dist / tgs
 End If

 While t < fltm * 100
 If StrComp(test, "F") = 0 Then
 If t * dt < 0.5 * fltm Then
 alt = ralt
 tas = rrate
 Else
 alt = talt

83 83

 tas = trate
 End If
 Else
 alt = talt
 tas = trate
 End If

 gw = gwi - totfb
 fflow = c1 + c2 * alt + c3 * alt * alt + c4 * tas + c5 * tas * tas + c6 * gw + c7 * gw * gw
 fb = fflow * dt
 totfb = totfb + fb

 t = t + 1

 Wend
 tnkrflburn = totfb

End Function

84 84

Bibliography

“Aerospace Weapons”, Airman, January 2002, pp 44-56.

Batitti, Roberto and G. Tecchiolli. “The Reactive Tabu Search”, ORSA Journal on

Computing, Vol 6, No 2, Spring 1994, pp 126-140.

Bonabeua, Eric and Guy Theraulaz. “Swarm Smarts”, Scientific American, Vol 282,

No 3, March 2000, pp 72-79.

Bullnheimer, Bernd, Richard Hartl, and Christine Strauss. “Applying the Ant System to

the Vehicle Routing Problem”, 2nd International Conference on
Metaheuristics, Sophia-Antipolis, France, July 21-24, 1997.

Bullnheimer, Bernd, Richard Hartl, and Christine Strauss. “An Improved Ant System

Algorithm for the Vehicle Routing Problem”, Annals of Operations Research,
Vol 89, 1999b, pp 319-328.

Calhoun, Kevin M. A Tabu Search for Scheduling and Rescheduling Combat Aircraft.

MS Thesis. AFIT/GOR/ENS/00M-06, School of Engineering and
Management, Air Force Institute of Technology, Wright-Patterson AFB OH,
March 2000.

Capehart, Shay R. A Tabu Search Metaheuristic for the Air Refueling Tanker Assignment

Problem. MS Thesis. AFIT/GOR/ENS/00M-07, School of Engineering and
Management, Air Force Institute of Technology, Wright-Patterson AFB OH,
March 2000.

Cordeau, Jean-Francois, M. Gendreau, and G. Laporte. “A Tabu Search Heuristic for

Periodic and MultiDepot Vehicle Routing Problems”, Networks, 1997,
pp 105-119.

Corne, David and others. New Ideas in Optimization. London: McGraw-Hill, 1999.

Dorigo, Marco and Gianni Di Caro. “Ant Colony Optimization: A New Metaheuristic”,

Proceeding of the Congress on Evolutionary Computation, Washington DC,
July 6-9, 1999.

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers,

1997.

85 85

Hostler, Harry C. Air Refueling Tanker Scheduling. MS Thesis. AFIT/GST/ENS/87M-7,
School of Engineering, Air Force Institute of Technology, Wright-Patterson
AFB OH, March 1987.

Iannuzzi, Philip A. “50 Years Without Air Refueling Doctrine”, Airlift/Tanker

Quarterly, Vol 5, No 2, Spring 1997.

Iannuzzi, Philip A. “50 Years Without Air Refueling Doctrine – Part II”, Airlift/Tanker

Quarterly, Vol 5, No 3, Summer 1997, pp. 15-21.

Logicon. “Combined Mating and Ranging Planning System Overview.” Slide

presentation, Information Technology Group, Logicon Inc., 1996.

Morton, Thomas E. and David W. Pentico. Heuristic Scheduling Systems. New York:

John Wiley & Sons, Inc, 1993.

Newman, Richard J. “Tankers and Lifters for a Distant War”, Air Force Magazine, Vol

85, No 1, January 2002, pp 56-60.

Pinedo, Michael. Scheduling: Theory, Algorithms, and Systems. Englewood Cliffs NJ:

Prentice Hall, 1995.

Silver, Edward A., Victor Vidal, and Dominique de Werra. “A Tutorial on Heuristic

Methods”, European Journal of Operational Research, Vol 5, 1980,
pp 153-162.

Simpson, Richard. “Command of Theater Air Mobility Forces During the Air War Over

Serbia”, Airlift/Tanker Quarterly, Volume 8, Number 3, Summer 2000,
pp 10-13.

Tekelioglu, Umit H. A Reactive Tabu Search Metaheuristic Extension of the Air

Refueling Tanker Assignment Problem. MS Thesis. AFIT/GOR/ENS/01M-
16. School of Engineering and Management, Air Force Institute of
Technology, Wright-Patterson AFB OH, March 2001.

“The AMC Barrel Allocator: Technical Overview”, Excerpt from unpublished article. n.

pag. http://www-2.cs.cmu/edu/afs/cs/project/ozone/www/barrel/tech-oview/
barrel-oview.html, 6 February 2002.

“USAF Almanac: Gallery of USAF Weapons”, Air Force Magazine, Vol 84, No5,

May 2001, pp. 132-158.

Wiley, Victor D. The Aerial Fleet Refueling Problem. PhD Dissertation. University of

Texas at Austin, Austin TX, 2001.

86 86

Winston, Wayne L. Operations Research Applications and Algorithms. Belmont CA:
Duxbury Press, 1994.

Zanakis, Stelios H. and James R. Evans. “Heuristic Optimization: Why, When and How

to Use It”, Interfaces, Vol 11, No 5, October 1981, pp 84-91.

87 87

Vita

Captain RonJon Annaballi graduated from Coatesville Area Senior High School

in Coatesville, Pennsylvania in June 1989. He accepted an Air Force ROTC scholarship

to attend Lehigh University in Bethlehem, Pennsylvania where he graduated with a

Bachelor of Science degree in Computer Engineering in May 1993.

 His first assignment was at Wright-Patterson Air Force Base, Ohio in September

1993. He served as a Software Controls Engineer, and later Executive Officer in the

Materials Directorate of Wright Laboratory. In January 1997, he was assigned to the 31st

Test and Evaluation Squadron, Detachment 1 at Kirtland Air Force Base, New Mexico.

At Kirtland, he served as a Military Utility Analyst before serving as the Chief of the

Unmanned Aerial Vehicle Branch and later as the Chief of the Advanced Combat

Aircraft Branch.

 In August 2000, he entered the Graduate School of Engineering and Management,

Air Force Institute of Technology at Wright-Patterson AFB, OH. Upon graduation,

Captain Annaballi will be assigned to the United States Strategic Command at Offutt Air

Force Base, Nebraska.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

11-03-2002
2. REPORT TYPE

Master's Thesis
3. DATES COVERED (From – To)

July 2001 - March 2002
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A MULTIPLE ANT COLONY OPTIMIZATION METAHEURISTIC FOR THE
AIR REFUELING TANKER ASSIGNMENT PROBLEM

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)
Annaballi, RonJon, Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/02-01

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 HQ AMC/XPY Air Force Office of Scientific Research
 402 Scott Drive, Unit 3L3 801 N. Randolph St, Room 933
 Scott AFB, IL 62225-5307 Arlington, VA 22203-1977
 DSN: 576-5954 (703) 696-8431
 Major Dave Ryer Major Juan Vasquez

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
14. ABSTRACT
A key tenet to the Air Force’s vision of Global Vigilance, Reach, and Power is the ability to project power via the use of aerial
refueling. Scheduling of limited tanker resources is a major concern for Air Mobility Command (AMC). Currently the Combined
Mating and Ranging Planning System (CMARPS) is used to plan aerial refueling operations, however due to the complex nature of
the program and the length of time needed to run a scenario, the need for a simple tool that runs in much shorter time is desired.

Ant colony algorithms are recently developed heuristics for finding solutions to difficult optimization problems based on simulation
the foraging behavior of ant colonies. It is a a distributive metaheuristic that combines an adaptive memory function with a local
heuristic funtion to repeatedly construct possible solutions which can then be evaluated. Using multiple ant colony heuristics
combined with a simple scheduling algorithm and modeling the Tanker Assignment Problem as a modified Multiple Depot Vehicle
Routing Problem, an Excel based spreadsheet tool was developed which generates very good solutions in very short time.

15. SUBJECT TERMS

Ant Colony optimization, Heuristics, Metaheuristics, Tanker Scheduling, vehicle routing problem, multiple depot vehicle routing problem

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. James T. Moore, AFIT/ENS

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

98
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4337 (james.moore@afit.edu)

